This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224195 #47 Feb 23 2025 04:49:33 %S A224195 3,5,7,9,13,15,17,25,29,31,33,49,57,61,63,65,97,113,121,125,127,129, %T A224195 193,225,241,249,253,255,257,385,449,481,497,505,509,511,513,769,897, %U A224195 961,993,1009,1017,1021,1023,1025,1537,1793,1921,1985,2017,2033,2041,2045,2047 %N A224195 Ordered sequence of numbers of form (2^n - 1)*2^m + 1 where n >= 1, m >= 1. %C A224195 The table is constructed so that row labels are 2^n - 1, and column labels are 2^n. The body of the table is the row*col + 1. A MAGMA program is provided that generates the numbers in a table format. The sequence is read along the antidiagonals starting from the top left corner. %C A224195 All of these numbers have the following property: %C A224195 let m be a member of A(n), %C A224195 if a sequence B(n) = all i such that i XOR (m - 1) = i - (m - 1), then %C A224195 the differences between successive members of B(n) is a repeating series %C A224195 of 1's with the last difference in the pattern m. The number of ones in %C A224195 the pattern is 2^j - 1, where j is the column index. %C A224195 As an example consider A(4) which is 9, %C A224195 the sequence B(n) where i XOR 8 = i - 8 starts as: %C A224195 8, 9, 10, 11, 12, 13, 14, 15, 24... (A115419) %C A224195 with successive differences of: %C A224195 1, 1, 1, 1, 1, 1, 1, 9. %C A224195 The main diagonal is the 6th cyclotomic polynomial evaluated at powers of two (A020515). %C A224195 The formula for diagonals above the main diagonal %C A224195 2^(2*n+1) - 2^(n + (a+1)/2) + 1 n>=(a+1)/2 a=odd number above diagonal %C A224195 2^(2*n) - 2^(n + (b/2)) + 1 n>=(b/2)+1 b=even number above diagonal %C A224195 The formulas for diagonals below the main diagonal %C A224195 2^(2*n+1) - 2^(n + 1 -(a+1)/2) + 1 n>=(a+1)/2 a=odd number below diagonal %C A224195 2^(2*n) - 2^(n - (b/2)) + 1 n>=(b/2)+1 b=even number below diagonal %C A224195 Primes of this sequence are in A152449. %H A224195 Brad Clardy, <a href="/A224195/b224195.txt">Table of n, a(n) for n = 1..1000</a> %F A224195 a(n) = (2^(A057555(2*n-1)) - 1)*2^(A057555(2*n)) + 1 for n>=1. [corrected by _Jason Yuen_, Feb 22 2025] %F A224195 a(n) = A081118(n)+2; a(n)=(2^i-1)*2^j+1, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Apr 04 2013 %e A224195 Using the lexicographic ordering of A057555 the sequence is: %e A224195 A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)... %e A224195 +1 | 2 4 8 16 32 64 128 256 512 1024 ... %e A224195 ----|----------------------------------------------------------------- %e A224195 1 | 3 5 9 17 33 65 129 257 513 1025 %e A224195 3 | 7 13 25 49 97 193 385 769 1537 3073 %e A224195 7 | 15 29 57 113 225 449 897 1793 3585 7169 %e A224195 15 | 31 61 121 241 481 961 1921 3841 7681 15361 %e A224195 31 | 63 125 249 497 993 1985 3969 7937 15873 31745 %e A224195 63 | 127 253 505 1009 2017 4033 8065 16129 32257 64513 %e A224195 127 | 255 509 1017 2033 4065 8129 16257 32513 65025 130049 %e A224195 255 | 511 1021 2041 4081 8161 16321 32641 65281 130561 261121 %e A224195 511 | 1023 2045 4089 8177 16353 32705 65409 130817 261633 523265 %e A224195 1023| 2047 4093 8185 16369 32737 65473 130945 261889 523777 1047553 %e A224195 ... %t A224195 Table[(2^j-1)*2^(i-j+1) + 1, {i, 10}, {j, i}] (* _Paolo Xausa_, Apr 02 2024 *) %o A224195 (Magma) %o A224195 //program generates values in a table form %o A224195 for i:=1 to 10 do %o A224195 m:=2^i - 1; %o A224195 m,[ m*2^n +1 : n in [1..10]]; %o A224195 end for; %o A224195 //program generates sequence in lexicographic ordering of A057555, read %o A224195 //along antidiagonals from top. Primes in the sequence are marked with *. %o A224195 for i:=2 to 18 do %o A224195 for j:=1 to i-1 do %o A224195 m:=2^j -1; %o A224195 k:=m*2^(i-j) + 1; %o A224195 if IsPrime(k) then k,"*"; %o A224195 else k; %o A224195 end if;; %o A224195 end for; %o A224195 end for; %Y A224195 Cf. A081118, A152449 (primes), A057555 (lexicographic ordering), A115419 (example). %Y A224195 Rows: A000051(i=1), A181565(2), A083686(3), A195744(4), A206371(5), A196657(6). %Y A224195 Cols: A000225(j=1), A036563(2), A048490(3), A176303 (7 offset of 8). %Y A224195 Diagonals: A020515 (main), A092440, A060867 (above), A134169 (below). %K A224195 nonn,tabl %O A224195 1,1 %A A224195 _Brad Clardy_, Apr 01 2013