A224196 Decimal expansion of the 3rd du Bois-Reymond constant.
0, 2, 8, 2, 5, 1, 7, 6, 4, 1, 6, 0, 0, 6, 7, 9, 3, 7, 8, 7, 3, 2, 1, 0, 7, 3, 2, 9, 9, 6, 2, 9, 8, 9, 8, 5, 1, 5, 4, 2, 7, 0, 2, 0, 2, 0, 1, 8, 1, 6, 0, 9, 9, 1, 7, 7, 1, 6, 9, 1, 9, 4, 8, 2, 9, 4, 4, 6, 3, 6, 3, 7, 2, 3, 3, 3, 0, 5, 7, 5, 1, 4, 9, 3, 7, 4, 7
Offset: 0
Examples
0.028251764...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 237-239.
Links
- Jon E. Schoenfield and Vaclav Kotesovec, Table of n, a(n) for n = 0..450 (first 100 terms from Jon E. Schoenfield)
- Eric Weisstein's World of Mathematics, du Bois-Reymond Constants.
Programs
-
Mathematica
digits = 16; m0 = 10^5; dm = 10^5; Clear[xi, c3]; xi[n_?NumericQ] := xi[n] = x /. FindRoot[x == Tan[x], {x, n*Pi + Pi/2 - 1/(4*n)}, WorkingPrecision -> digits + 5]; c3[m_] := c3[m] = 2*Sum[1/(1 + xi[n]^2)^(3/2), {n, 1, m}] - 2*PolyGamma[2, m + 1]/(2*Pi^3); c3[m0] ; c3[m = m0 + dm]; While[RealDigits[c3[m], 10, digits] != RealDigits[c3[m - dm], 10, digits], Print["m = ", m, " ", c3[m]]; m = m + dm]; RealDigits[c3[m], 10, digits] // First
Extensions
a(8)-a(15) from Robert G. Wilson v, Nov 06 2013
More terms from Jon E. Schoenfield, Aug 17 2014
Comments