A224197 Least b > p_n^2 such that [p_1^2,p_2^2,...,p_n^2] in base b is prime, where p_j denotes the j-th prime.
11, 26, 51, 124, 177, 312, 394, 668, 843, 978, 1398, 1730, 1911, 2242, 2859, 3496, 3724, 4532, 5073, 5358, 6269, 6906, 7927, 9422, 10205, 10766, 11522, 12060, 12923, 16142, 17220, 18788, 19409, 22806, 22965, 25562, 26570, 28038, 30636
Offset: 2
Keywords
Examples
a(35) = s_2(1,35) = 22806 since [p_1^2,p_2^2,...,p_{35}^2] in base 22806 is prime. Note that p_{36}^2 = 22801 < 22806 < p_{35}*p_{37} = 23393 < p_{36}*p_{37} = 23707. a(287) = s_2(1,287) = 3519434 since [p_1^2,p_2^2,...,p_{287}^2] in base 3519434 is prime. Note that p_{287}*p_{289} = 3519367 < 3519434 < p_{288}^2 = 3523129 < p_{288}*p_{289} = 3526883.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..300
- Zhi-Wei Sun, A general conjecture involving k-th powers, a message to Number Theory List, April 1, 2013.
Programs
-
Mathematica
A[n_,x_]:=A[n,x]=Sum[Prime[k]^2*x^(n-k),{k,1,n}] Do[Do[Do[If[PrimeQ[A[n,b]]==True,Print[n," ",b];Goto[aa]],{b,Prime[n]^2+1,Prime[n+1]Prime[n+2]-1}]; Print[n," ",counterexample];Label[aa];Continue,{n,2,100}]]
Comments