cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224206 Number of 4Xn 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

This page as a plain text file.
%I A224206 #6 Jul 23 2025 05:03:24
%S A224206 256,16000,263516,2411246,16355242,93052770,475218035,2252100875,
%T A224206 10026501335,42033573628,165872759545,616278459399,2159074455116,
%U A224206 7151151269790,22464417502819,67161353094487,191751351630146
%N A224206 Number of 4Xn 0..3 arrays with rows unimodal and antidiagonals nondecreasing.
%C A224206 Row 4 of A224204
%H A224206 R. H. Hardin, <a href="/A224206/b224206.txt">Table of n, a(n) for n = 1..210</a>
%F A224206 Empirical: a(n) = (1/2906843957821440000)*n^24 + (11/242236996485120000)*n^23 + (4897/1529252690853888000)*n^22 + (2857/19308746096640000)*n^21 + (973909/198604245565440000)*n^20 + (93229/757205729280000)*n^19 + (266789/109442285568000)*n^18 + (104478641/2667655710720000)*n^17 + (1429093157/2738983403520000)*n^16 + (4913895191/836911595520000)*n^15 + (171672001139/3012881743872000)*n^14 + (29350223359/59779399680000)*n^13 + (433008014137969/110472330608640000)*n^12 + (76105242218503/2510734786560000)*n^11 + (344040677347481/1506440871936000)*n^10 + (4054053159749/2583060480000)*n^9 + (276889384664596819/32011868528640000)*n^8 + (4163175202299941/127031224320000)*n^7 + (2967972507533347/42533251891200)*n^6 + (338490515487987437/4223788208640000)*n^5 + (85995749191634941/527973526080000)*n^4 - (9502462212673/345080736000)*n^3 - (23527482078379273/74209612276800)*n^2 + (572648006969/535422888)*n - 1055 for n>2
%e A224206 Some solutions for n=3
%e A224206 ..1..0..0....0..2..2....0..0..2....0..0..0....2..2..2....2..2..0....0..2..1
%e A224206 ..3..2..1....3..2..1....3..2..0....3..2..1....2..2..0....3..0..0....3..3..0
%e A224206 ..2..2..3....2..1..1....3..1..1....3..2..1....2..2..2....3..2..0....3..2..0
%e A224206 ..3..3..3....1..2..3....3..3..3....2..2..3....2..2..2....2..2..3....2..2..1
%K A224206 nonn
%O A224206 1,1
%A A224206 _R. H. Hardin_ Apr 01 2013