A224229 a(0)=2; for n>0, a(n) = smallest prime not occurring earlier in the sequence such that a(n-1)+a(n) is a multiple of floor(sqrt(n)). If no such prime exists, the sequence terminates.
2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 29, 37, 41, 43, 47, 61, 59, 53, 67, 73, 71, 89, 79, 97, 83, 107, 103, 127, 113, 137, 163, 157, 173, 167, 193, 197, 109, 101, 139, 131, 151, 149, 181, 179, 199, 191, 211, 227, 223, 239, 251, 281, 293, 337, 307, 379, 349, 421, 419, 449, 433, 463, 461, 491, 229, 283, 269, 331, 277, 347, 317, 443, 373, 467, 389, 499, 397, 523
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..9999
Programs
-
Maple
# A224229 Digits:=100; M1:=100000; hit:=Array(1..M1); M2:=1000; a:=[2]; hit[1]:=1; p:=2; for n from 1 to M2 do t1:=floor(sqrt(n)); sw1:=-1; for i from 2 to M1 do q:=ithprime(i); if ( (p+q) mod t1 ) = 0 and hit[i] <> 1 then sw1:=1; break; fi; od: if sw1 < 0 then lprint("ERROR", n, a); break; fi; a:=[op(a),q]; hit[i]:=1; p:=q; od: a;
Comments