This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224241 #13 Jul 19 2016 11:36:09 %S A224241 0,3,130456,342096,1226720,291575011,379894587,523040160,15216609776, %T A224241 136622606520 %N A224241 Numbers k such that k^2 XOR (k+1)^2 is a square, and k^2 XOR (k+2)^2 is also a square, where XOR is the bitwise logical exclusive-or operator. %C A224241 A subsequence of A221643. %C A224241 Conjecture: the sequence is infinite. %o A224241 (C) %o A224241 #include <stdio.h> %o A224241 #include <math.h> %o A224241 int main() { %o A224241 unsigned long long a, i, t; %o A224241 for (i=0; i < (1L<<32)-2; ++i) { %o A224241 a = (i*i) ^ ((i+1)*(i+1)); %o A224241 t = sqrt(a); %o A224241 if (a != t*t) continue; %o A224241 a = (i*i) ^ ((i+2)*(i+2)); %o A224241 t = sqrt(a); %o A224241 if (a != t*t) continue; %o A224241 printf("%llu, ", i); %o A224241 } %o A224241 return 0; %o A224241 } %o A224241 (Java) %o A224241 class A224241 { %o A224241 static public BigInteger isqrt(final BigInteger n) %o A224241 { %o A224241 if ( n.compareTo(BigInteger.ZERO) < 0 ) %o A224241 throw new ArithmeticException("Negative argument "+ n.toString()) ; %o A224241 BigInteger x ; %o A224241 final int bl = n.bitLength() ; %o A224241 if ( bl > 120) %o A224241 x = n.shiftRight(bl/2-1) ; %o A224241 else %o A224241 { %o A224241 final double resul= Math.sqrt(n.doubleValue()) ; %o A224241 x = new BigInteger(""+Math.round(resul)) ; %o A224241 } %o A224241 final BigInteger two = new BigInteger("2") ; %o A224241 while ( true) %o A224241 { %o A224241 BigInteger x2 = x.pow(2) ; %o A224241 BigInteger xplus2 = x.add(BigInteger.ONE).pow(2) ; %o A224241 if ( x2.compareTo(n) <= 0 && xplus2.compareTo(n) > 0) %o A224241 return x ; %o A224241 xplus2 = xplus2.subtract(x.shiftLeft(2)) ; %o A224241 if ( xplus2.compareTo(n) <= 0 && x2.compareTo(n) > 0) %o A224241 return x.subtract(BigInteger.ONE) ; %o A224241 xplus2 = x2.subtract(n).divide(x).divide(two) ; %o A224241 x = x.subtract(xplus2) ; %o A224241 } %o A224241 } %o A224241 static public void main(String[] argv) %o A224241 { %o A224241 for(BigInteger k = BigInteger.ZERO ; ; k= k.add(BigInteger.ONE) ) %o A224241 { %o A224241 final BigInteger k2 = k.pow(2) ; %o A224241 final BigInteger kplus1 = k.add(BigInteger.ONE) ; %o A224241 final BigInteger k12 = kplus1.pow(2) ; %o A224241 final BigInteger xor1 = k2.xor(k12) ; %o A224241 final BigInteger roo1 = isqrt(xor1) ; %o A224241 if ( roo1.pow(2).compareTo(xor1) == 0 ) %o A224241 { %o A224241 final BigInteger k22 = kplus1.add(BigInteger.ONE).pow(2) ; %o A224241 final BigInteger xor2 = k2.xor(k22) ; %o A224241 final BigInteger roo2 = isqrt(xor2) ; %o A224241 if ( roo2.pow(2).compareTo(xor2) == 0 ) %o A224241 System.out.println(k) ; %o A224241 } %o A224241 } %o A224241 } %o A224241 } %o A224241 // _R. J. Mathar_, Apr 25 2013 %Y A224241 Cf. A221643. %K A224241 nonn,base,more,less %O A224241 1,2 %A A224241 _Alex Ratushnyak_, Apr 01 2013