This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224243 #34 Apr 07 2021 12:22:27 %S A224243 4,22,108,490,2164,9474,41374,180614,788676,3445462,15059202,65847946, %T A224243 288033326,1260313930,5516051890,24147542122,105729680608, %U A224243 463006798298,2027839420598,8882324416302,38909820194506,170461077652718,746826223566214,3272185833672630 %N A224243 Number of smooth, equivalently rationally smooth, Schubert varieties of type D_n. %C A224243 Also, the number of signed permutations w in the Type D signed permutations whose initial interval [id,w] in Bruhat order is rank symmetric. Equivalently, the Kazhdan-Lusztig polynomial P_id,w(q) = 1. Characterized by pattern avoidance. %H A224243 Sara Billey, <a href="https://doi.org/10.1006/aima.1998.1744">Pattern avoidance and rational smoothness of Schubert varieties</a>, Advances in Math, vol. 139 (1998) pp. 141-156. %H A224243 E. Richmond and W. Slofstra, <a href="https://arxiv.org/abs/1510.06060">Staircase diagrams and enumeration of smooth Schubert varieties</a>, arXiv:1510.06060 [math.CO], 2015; J. Combin. Ser. A, Vol 150 (2017) pp. 328-376. %F A224243 G.f.: 4*x^2 + x*((-4 + 19*x + 8*x^2 - 30*x^3 + 16*x^4)*(1-x) + (4 - 15*x^1 + 11*x^2 - 2*x^4)*sqrt(1-4*x))/((1-x)*(1 - 6*x + 8*x^2 - 4*x^3)). - _Edward Richmond_, Apr 05 2021 %o A224243 (PARI) seq(n)={Vec(4*x+((-4+19*x+8*x^2-30*x^3+16*x^4)*(1 - x)+(4 -15*x^1 + 11*x^2 -2*x^4)*sqrt(1-4*x + O(x*x^n)))/((1-x)*(1-6*x+8*x^2-4*x^3)))} \\ _Andrew Howroyd_, Apr 06 2021 %Y A224243 Cf. A061539, A224240. %K A224243 nonn,easy %O A224243 2,1 %A A224243 _Sara Billey_, Apr 01 2013 %E A224243 Offset corrected and terms a(10) and beyond from _Edward Richmond_, Apr 05 2021