This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224252 #14 Aug 21 2014 17:54:22 %S A224252 277816,618772,14339143,34193341,1125355221,1225535211,2613391326, %T A224252 6231933162,26157457326,62375475162,100504263021,102407325111, %U A224252 111523704201,120362405001,144326261443,275603902756,277816277816,344162623441,392739273927,392875758639 %N A224252 Nonpalindromic n such that the factorizations of n and its digital reverse differ only for the exponents order. %C A224252 Subset of A110751 and A110819. %H A224252 Giovanni Resta, <a href="/A224252/b224252.txt">Table of n, a(n) for n = 1..34</a> (terms < 2*10^12) %e A224252 277816 and its reverse 618772 are in the sequence since 277816 = 2^3*7*11^2*41 and 618772 = 2^2*7^3*11*41 have the same prime divisors and the same exponents (1,1,2,3). %t A224252 Do[fn = FactorInteger@n; fr = FactorInteger@ FromDigits@ Reverse@ IntegerDigits@n; If[fn != fr && First /@ fn == First /@ fr && Sort[Last /@ fn] == Sort[Last /@ fr], Print[n]], {n, 15*10^6}] %o A224252 (Python) %o A224252 from sympy import primefactors, factorint %o A224252 A224252 = [n for n in range(1,10**6) if n != int(str(n)[::-1]) and primefactors(n) == primefactors(int(str(n)[::-1])) and sorted(factorint(n).values()) == sorted(factorint(int(str(n)[::-1])).values())] # _Chai Wah Wu_, Aug 21 2014 %Y A224252 Cf. A110751, A110819, A224253. %K A224252 nonn,base %O A224252 1,1 %A A224252 _Giovanni Resta_, Apr 02 2013