cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224283 Number of 4Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

This page as a plain text file.
%I A224283 #6 Jul 23 2025 05:04:40
%S A224283 256,16000,186516,1334973,8073038,44901359,233090092,1121852243,
%T A224283 4979825221,20391024279,77331512406,273217833082,905042600151,
%U A224283 2828381836611,8387049692461,23720147714267,64273739402314
%N A224283 Number of 4Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
%C A224283 Row 4 of A224281
%H A224283 R. H. Hardin, <a href="/A224283/b224283.txt">Table of n, a(n) for n = 1..210</a>
%F A224283 Empirical: a(n) = (1/2906843957821440000)*n^24 + (1/80745665495040000)*n^23 + (46391/53523844179886080000)*n^22 + (11257/405483668029440000)*n^21 + (1330123/1390229718958080000)*n^20 + (8502743/347557429739520000)*n^19 + (35671/59779399680000)*n^18 + (133834769/10670622842880000)*n^17 + (7571063047/30128817438720000)*n^16 + (2965237343/836911595520000)*n^15 + (328422846067/15064408719360000)*n^14 + (22514281381/48910417920000)*n^13 + (7036550185081/2254537359360000)*n^12 - (105103493973601/2510734786560000)*n^11 + (1257210817095943/1076029194240000)*n^10 - (236735071681049/19615115520000)*n^9 + (3534310707922188979/32011868528640000)*n^8 - (767055210116438233/1143281018880000)*n^7 + (10350657608308971137/3103191336960000)*n^6 - (8154723578394294443/703964701440000)*n^5 + (16475873524529520931/527973526080000)*n^4 - (482012437494247/8888443200)*n^3 + (78892730856408401/873054262080)*n^2 - (77283877096589/243374040)*n + 643573 for n>7
%e A224283 Some solutions for n=3
%e A224283 ..0..0..0....0..0..2....3..2..1....2..0..0....3..0..0....1..2..1....2..0..0
%e A224283 ..0..0..1....2..2..2....3..2..1....3..2..0....1..3..2....3..2..1....1..1..0
%e A224283 ..2..1..0....2..2..2....3..1..1....2..0..0....3..3..1....3..1..1....1..1..1
%e A224283 ..1..0..0....3..2..2....1..2..1....2..1..0....3..3..0....1..3..1....1..2..1
%K A224283 nonn
%O A224283 1,1
%A A224283 _R. H. Hardin_ Apr 02 2013