cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224305 Number of n X 3 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

22, 218, 1586, 11361, 82700, 615481, 4634768, 35003328, 264487714, 1997888432, 15087449584, 113921725004, 860155842566, 6494472790364, 49035576285772, 370236844834368, 2795429838028120, 21106576528056696, 159362840727871756
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Column 3 of A224310.

Examples

			Some solutions for n=3
..1..0..0....1..2..0....1..0..0....0..2..0....2..1..0....2..0..0....1..0..0
..2..1..1....2..2..1....0..2..2....2..0..0....2..0..0....0..2..2....2..1..1
..2..2..1....2..2..2....2..2..0....0..1..0....0..2..0....2..2..2....2..2..0
		

Crossrefs

Cf. A224310.

Formula

Empirical: a(n) = 10*a(n-1) -16*a(n-2) -24*a(n-3) -44*a(n-4) +728*a(n-5) -678*a(n-6) -722*a(n-7) -860*a(n-8) +9336*a(n-9) -3916*a(n-10) +792*a(n-11) +320*a(n-12) -11936*a(n-13) +2848*a(n-14) +128*a(n-15) +384*a(n-16) +3840*a(n-17).

A224306 Number of nX4 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

46, 698, 5996, 45453, 345875, 2717759, 22071219, 182843194, 1528645389, 12825738594, 107715455487, 904773390455, 7599493889175, 63827735783412, 536075684379248, 4502373101398007, 37814478865105363, 317596919801312214
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Column 4 of A224310

Examples

			Some solutions for n=3
..0..0..0..0....0..1..1..1....2..2..0..0....1..1..1..0....0..0..0..2
..0..0..0..1....1..2..2..2....2..2..1..0....1..2..1..1....0..0..2..2
..0..0..2..2....2..2..2..1....2..2..0..0....2..2..1..0....1..2..2..1
		

Formula

Empirical: a(n) = 15*a(n-1) -58*a(n-2) -13*a(n-3) +160*a(n-4) +1879*a(n-5) -7373*a(n-6) +6407*a(n-7) -2233*a(n-8) +11269*a(n-9) -128277*a(n-10) +514460*a(n-11) -559176*a(n-12) +774916*a(n-13) +91024*a(n-14) -426367*a(n-15) -1572540*a(n-16) -2736461*a(n-17) -3322156*a(n-18) -10388293*a(n-19) +187424*a(n-20) -4090338*a(n-21) +4202406*a(n-22) +9112758*a(n-23) +21520552*a(n-24) +26916252*a(n-25) +22991028*a(n-26) +42071688*a(n-27) +28540632*a(n-28) +18156960*a(n-29) +483840*a(n-30) for n>35

A224307 Number of nX5 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

86, 1915, 20214, 164514, 1258372, 9829605, 80083648, 677557164, 5882182248, 51821072499, 459888653374, 4094603418389, 36504683598749, 325625769512292, 2905345619322972, 25926555852863165, 231390081746732292
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Column 5 of A224310

Examples

			Some solutions for n=3
..0..0..2..1..0....0..0..1..1..1....0..0..0..1..1....0..1..1..0..0
..0..2..2..2..1....0..1..1..1..1....0..0..1..2..1....1..2..2..1..0
..2..2..2..2..1....1..2..1..1..0....1..2..2..1..0....2..2..1..1..1
		

Formula

Empirical recurrence of order 61 (see link above)

A224308 Number of nX6 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

148, 4690, 61953, 562760, 4420701, 33934344, 268379906, 2215451575, 19023816444, 168305254414, 1519045558334, 13877824165049, 127654546150864, 1178500994429585, 10900361047173008, 100920807678845030
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Column 6 of A224310

Examples

			Some solutions for n=3
..0..2..1..1..0..0....0..0..0..2..0..0....0..1..1..0..0..0....1..1..1..0..0..0
..2..2..1..0..0..0....0..2..2..0..0..0....1..1..1..2..1..1....2..2..2..2..1..0
..2..2..1..1..0..0....2..2..1..1..0..0....2..2..2..2..2..2....2..2..2..2..1..0
		

Formula

Empirical recurrence of order 88 (see link above)

A224309 Number of nX7 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

239, 10511, 174378, 1825800, 15312504, 118317987, 911404794, 7236130163, 59751261572, 512310103541, 4533427479414, 41097427928564, 379017425099579, 3535755438091183, 33225644610034806, 313628721090498518
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Column 7 of A224310

Examples

			Some solutions for n=3
..0..0..0..0..1..2..2....0..0..0..1..2..1..0....0..0..2..2..0..0..0
..0..0..2..2..2..2..0....0..0..1..2..1..0..0....0..2..2..2..2..0..0
..2..2..2..2..2..0..0....0..2..2..1..1..1..0....2..2..2..2..1..0..0
		

A224311 Number of 3Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

27, 324, 1586, 5996, 20214, 61953, 174378, 454832, 1108958, 2547780, 5554847, 11564081, 23107746, 44519456, 83011127, 150287312, 264917825, 455762696, 766835415, 1264104630, 2044874898, 3250558135, 5083853932, 7831604260
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Row 3 of A224310

Examples

			Some solutions for n=3
..1..2..0....2..1..1....0..0..0....0..2..1....1..0..0....2..2..1....2..0..0
..2..2..0....2..2..0....0..2..0....2..2..0....0..2..1....2..2..0....0..2..0
..2..2..2....2..0..0....2..0..0....2..1..1....2..2..1....2..2..0....2..1..1
		

Formula

Empirical: a(n) = (1/19160064)*n^12 + (1/1064448)*n^11 + (1507/43545600)*n^10 + (73/161280)*n^9 + (23603/2903040)*n^8 + (111/3584)*n^7 + (13023121/43545600)*n^6 + (130093/96768)*n^5 + (5619469/2177280)*n^4 + (54895/2688)*n^3 - (11456441/1663200)*n^2 + (205131/1540)*n - 196 for n>3

A224312 Number of 4Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

81, 1944, 11361, 45453, 164514, 562760, 1825800, 5585818, 16074063, 43567313, 111632420, 271667665, 630966702, 1405080075, 3012670262, 6242914246, 12544093805, 24510622826, 46689053477, 86888070112, 158272032306
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Row 4 of A224310

Examples

			Some solutions for n=3
..0..1..0....1..0..0....2..2..2....0..1..0....0..1..0....2..1..1....1..1..1
..1..2..1....1..2..1....2..2..0....2..0..0....1..2..1....1..1..2....1..1..0
..2..2..2....2..1..1....2..1..0....0..0..0....2..1..0....1..2..0....2..1..1
..2..2..1....2..2..1....1..1..1....2..0..0....1..1..2....2..0..0....1..2..1
		

Formula

Empirical: a(n) = (1/106748928000)*n^16 + (1/13343616000)*n^15 + (89/9340531200)*n^14 + (5179/37362124800)*n^13 + (126779/28740096000)*n^12 + (103081/1306368000)*n^11 + (18019/13063680)*n^10 - (76841/261273600)*n^9 + (81547771/746496000)*n^8 + (262193969/1306368000)*n^7 - (318727393/1437004800)*n^6 + (10868710291/359251200)*n^5 - (1656836125459/15567552000)*n^4 + (975909282919/1297296000)*n^3 - (26075217263/10810800)*n^2 + (77958821/8190)*n - 17954 for n>6

A224313 Number of 5Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

243, 11664, 82700, 345875, 1258372, 4420701, 15312504, 51743213, 168153223, 520664883, 1530227559, 4268724974, 11327557052, 28687337144, 69591692782, 162311418316, 365262043261, 795700321817, 1682982694668, 3465433571507
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Row 5 of A224310

Examples

			Some solutions for n=3
..0..0..2....2..2..0....0..1..0....2..1..0....0..0..0....1..1..0....1..1..1
..0..2..0....2..2..0....1..0..0....1..2..0....0..2..1....1..1..1....2..2..0
..2..1..0....2..1..1....2..2..2....2..1..1....2..1..1....1..1..0....2..0..0
..1..1..1....2..1..1....2..2..2....2..1..0....2..2..0....1..1..0....0..2..0
..2..1..1....2..2..0....2..2..0....1..0..0....2..1..0....1..1..1....2..2..2
		

Formula

Empirical: a(n) = (1/1379196149760000)*n^20 - (1/137919614976000)*n^19 + (41/33874993152000)*n^18 + (1/426995712000)*n^17 + (88069/104613949440000)*n^16 + (102569/10461394944000)*n^15 + (1648459/2988969984000)*n^14 + (8052547/1494484992000)*n^13 + (615490013/2299207680000)*n^12 - (886807741/229920768000)*n^11 + (219072974333/3218890752000)*n^10 - (466264670551/1609445376000)*n^9 - (4824912304573/2490808320000)*n^8 + (350881754231/4981616640)*n^7 - (289916128775839/373621248000)*n^6 + (131084442677207/20756736000)*n^5 - (232251293325755159/6175128960000)*n^4 + (1510872624234341/8576568000)*n^3 - (2770659376747739/4655851200)*n^2 + (405320158706/285285)*n - 1873744 for n>9

A224314 Number of 6Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

729, 69984, 615481, 2717759, 9829605, 33934344, 118317987, 416543502, 1454734611, 4952178320, 16233385381, 50895787205, 152210262323, 434202798968, 1183383351150, 3089018682146, 7745205810204, 18709904381707, 43674432900423
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Row 6 of A224310

Examples

			Some solutions for n=3
..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..0....0..0..0
..0..0..1....0..2..1....1..2..0....1..1..0....1..0..0....1..0..0....1..0..0
..1..1..0....2..1..1....2..0..0....2..2..1....2..2..1....0..1..1....2..2..1
..1..2..1....1..1..1....1..1..0....2..2..1....2..2..0....2..1..0....2..1..0
..2..1..0....1..2..1....2..0..0....2..1..1....2..2..2....2..2..0....1..2..1
..1..2..0....2..1..1....2..1..0....2..2..1....2..2..1....2..1..1....2..2..1
		

Formula

Empirical: a(n) = (1/35608838483312640000)*n^24 - (1/989134402314240000)*n^23 + (29/340606281144729600)*n^22 - (53/37347179950080000)*n^21 + (22843/270322445352960000)*n^20 - (9467/35777970708480000)*n^19 + (662659/9959247986688000)*n^18 + (276971/2196892938240000)*n^17 + (3268463573/52725430517760000)*n^16 - (2963663/488198430720000)*n^15 + (9468406841/251073478656000)*n^14 - (84633169147/72425041920000)*n^13 + (487482300065231/17575143505920000)*n^12 - (1486260397277527/4393785876480000)*n^11 + (9918644607332189/5272543051776000)*n^10 + (43388314670213341/2196892938240000)*n^9 - (3089001310329622433/5335311421440000)*n^8 + (16161770203432180709/2000741783040000)*n^7 - (9131503366840338348499/106439462857728000)*n^6 + (11613280481413038257281/14783258730240000)*n^5 - (88365905776581806936999/14783258730240000)*n^4 + (4417617587739169133/127135008000)*n^3 - (377212760667401564861/2698531355520)*n^2 + (557689056867461/1615152)*n - 399418303 for n>12

A224315 Number of 7Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

2187, 419904, 4634768, 22071219, 80083648, 268379906, 911404794, 3202146197, 11485486125, 41212527412, 145413457614, 498294091308, 1645129036705, 5209884539118, 15798173688229, 45874155195909, 127717720870044
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Row 7 of A224310

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..1....0..0..0....0..0..1....0..0..0....0..0..2....0..1..1
..0..0..1....0..2..1....0..0..2....0..1..2....1..1..0....0..2..0....2..1..0
..0..2..0....2..2..2....0..2..2....2..2..1....1..0..0....2..2..0....1..0..0
..2..0..0....2..2..2....2..2..0....2..1..1....2..2..0....2..2..1....0..0..0
..1..0..0....2..2..0....2..1..0....2..1..0....2..0..0....2..1..0....1..0..0
..0..2..0....2..2..0....1..2..1....1..1..1....0..2..0....2..2..1....2..2..1
		

Formula

Empirical polynomial of degree 28 (see link above)
Showing 1-10 of 11 results. Next