A224312 Number of 4Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
81, 1944, 11361, 45453, 164514, 562760, 1825800, 5585818, 16074063, 43567313, 111632420, 271667665, 630966702, 1405080075, 3012670262, 6242914246, 12544093805, 24510622826, 46689053477, 86888070112, 158272032306
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..0....1..0..0....2..2..2....0..1..0....0..1..0....2..1..1....1..1..1 ..1..2..1....1..2..1....2..2..0....2..0..0....1..2..1....1..1..2....1..1..0 ..2..2..2....2..1..1....2..1..0....0..0..0....2..1..0....1..2..0....2..1..1 ..2..2..1....2..2..1....1..1..1....2..0..0....1..1..2....2..0..0....1..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/106748928000)*n^16 + (1/13343616000)*n^15 + (89/9340531200)*n^14 + (5179/37362124800)*n^13 + (126779/28740096000)*n^12 + (103081/1306368000)*n^11 + (18019/13063680)*n^10 - (76841/261273600)*n^9 + (81547771/746496000)*n^8 + (262193969/1306368000)*n^7 - (318727393/1437004800)*n^6 + (10868710291/359251200)*n^5 - (1656836125459/15567552000)*n^4 + (975909282919/1297296000)*n^3 - (26075217263/10810800)*n^2 + (77958821/8190)*n - 17954 for n>6
Comments