A224313 Number of 5Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
243, 11664, 82700, 345875, 1258372, 4420701, 15312504, 51743213, 168153223, 520664883, 1530227559, 4268724974, 11327557052, 28687337144, 69591692782, 162311418316, 365262043261, 795700321817, 1682982694668, 3465433571507
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..2....2..2..0....0..1..0....2..1..0....0..0..0....1..1..0....1..1..1 ..0..2..0....2..2..0....1..0..0....1..2..0....0..2..1....1..1..1....2..2..0 ..2..1..0....2..1..1....2..2..2....2..1..1....2..1..1....1..1..0....2..0..0 ..1..1..1....2..1..1....2..2..2....2..1..0....2..2..0....1..1..0....0..2..0 ..2..1..1....2..2..0....2..2..0....1..0..0....2..1..0....1..1..1....2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/1379196149760000)*n^20 - (1/137919614976000)*n^19 + (41/33874993152000)*n^18 + (1/426995712000)*n^17 + (88069/104613949440000)*n^16 + (102569/10461394944000)*n^15 + (1648459/2988969984000)*n^14 + (8052547/1494484992000)*n^13 + (615490013/2299207680000)*n^12 - (886807741/229920768000)*n^11 + (219072974333/3218890752000)*n^10 - (466264670551/1609445376000)*n^9 - (4824912304573/2490808320000)*n^8 + (350881754231/4981616640)*n^7 - (289916128775839/373621248000)*n^6 + (131084442677207/20756736000)*n^5 - (232251293325755159/6175128960000)*n^4 + (1510872624234341/8576568000)*n^3 - (2770659376747739/4655851200)*n^2 + (405320158706/285285)*n - 1873744 for n>9
Comments