A224314 Number of 6Xn 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
729, 69984, 615481, 2717759, 9829605, 33934344, 118317987, 416543502, 1454734611, 4952178320, 16233385381, 50895787205, 152210262323, 434202798968, 1183383351150, 3089018682146, 7745205810204, 18709904381707, 43674432900423
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..0....0..0..0 ..0..0..1....0..2..1....1..2..0....1..1..0....1..0..0....1..0..0....1..0..0 ..1..1..0....2..1..1....2..0..0....2..2..1....2..2..1....0..1..1....2..2..1 ..1..2..1....1..1..1....1..1..0....2..2..1....2..2..0....2..1..0....2..1..0 ..2..1..0....1..2..1....2..0..0....2..1..1....2..2..2....2..2..0....1..2..1 ..1..2..0....2..1..1....2..1..0....2..2..1....2..2..1....2..1..1....2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/35608838483312640000)*n^24 - (1/989134402314240000)*n^23 + (29/340606281144729600)*n^22 - (53/37347179950080000)*n^21 + (22843/270322445352960000)*n^20 - (9467/35777970708480000)*n^19 + (662659/9959247986688000)*n^18 + (276971/2196892938240000)*n^17 + (3268463573/52725430517760000)*n^16 - (2963663/488198430720000)*n^15 + (9468406841/251073478656000)*n^14 - (84633169147/72425041920000)*n^13 + (487482300065231/17575143505920000)*n^12 - (1486260397277527/4393785876480000)*n^11 + (9918644607332189/5272543051776000)*n^10 + (43388314670213341/2196892938240000)*n^9 - (3089001310329622433/5335311421440000)*n^8 + (16161770203432180709/2000741783040000)*n^7 - (9131503366840338348499/106439462857728000)*n^6 + (11613280481413038257281/14783258730240000)*n^5 - (88365905776581806936999/14783258730240000)*n^4 + (4417617587739169133/127135008000)*n^3 - (377212760667401564861/2698531355520)*n^2 + (557689056867461/1615152)*n - 399418303 for n>12
Comments