A224114
T(n,k) = Number of idempotent n X n 0..k matrices of rank 2.
Original entry on oeis.org
0, 0, 1, 0, 1, 21, 0, 1, 51, 282, 0, 1, 93, 1434, 3070, 0, 1, 147, 4182, 30410, 29505, 0, 1, 213, 9762, 136990, 546465, 260967, 0, 1, 291, 19110, 467290, 3784335, 8815317, 2175236, 0, 1, 381, 34602, 1240310, 18925485, 94529631
Offset: 1
Some solutions for n=3, k=4:
..1..0..2....0..1..3....0..0..1....0..0..0....0..0..0....1..0..0....1..3..0
..0..1..3....0..1..0....0..1..0....3..1..0....0..1..0....0..1..1....0..0..0
..0..0..0....0..0..1....0..0..1....3..0..1....4..0..1....0..0..0....0..3..1
A276999
Triangle read by rows, T(n,k) = n^k - 2^(k/2)*KummerU(-k/2,1/2,n^2/2) for 0<=k<=n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 9, 0, 0, 1, 12, 93, 0, 0, 1, 15, 147, 1175, 0, 0, 1, 18, 213, 2070, 17835, 0, 0, 1, 21, 291, 3325, 33825, 317667, 0, 0, 1, 24, 381, 5000, 58575, 635208, 6506647, 0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397
Offset: 0
Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 1, 9;
0, 0, 1, 12, 93;
0, 0, 1, 15, 147, 1175;
0, 0, 1, 18, 213, 2070, 17835;
0, 0, 1, 21, 291, 3325, 33825, 317667;
0, 0, 1, 24, 381, 5000, 58575, 635208, 6506647;
0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397;
.
For instance T(3,3) = 9 because there are 27 functions [3]->[3], 18 of which have
no 2-cycles. The 9 functions which have 2-cycles are (represented as [f(1), f(2),
f(3)]): [1, 3, 2], [2, 1, 1], [2, 1, 2], [2, 1, 3], [2, 3, 2], [3, 1, 1],
[3, 2, 1], [3, 3, 1], [3, 3, 2].
-
T := (n,k) -> n^k - 2^(k/2)*KummerU(-k/2, 1/2, n^2/2):
seq(seq(simplify(T(n,k)), k=0..n), n=0..9);
-
Table[Simplify[n^k - 2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k, 0, n}] // Flatten
-
def T(n, k):
@cached_function
def h(n, x):
if n == 0: return 1
if n == 1: return 2*x
return 2*(x*h(n-1,x)-(n-1)*h(n-2,x))
return n^k - h(k, n/sqrt(2))/2^(k/2)
for n in range(10):
print([T(n,k) for k in (0..n)])
Showing 1-2 of 2 results.
Comments