This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224339 #21 Oct 13 2022 06:37:56 %S A224339 1,5,13,29,31,65,57,125,121,155,133,377,183,285,403,509,307,605,381, %T A224339 899,741,665,553,1625,781,915,1093,1653,871,2015,993,2045,1729,1535, %U A224339 1767,3509,1407,1905,2379,3875,1723,3705,1893,3857,3751,2765,2257,6617,2801,3905,3991,5307 %N A224339 Absolute difference between sum of odd divisors of n^2 and sum of even divisors of n^2. %C A224339 Multiplicative because A113184 is. %C A224339 Logarithmic derivative of A224340. %H A224339 Paul D. Hanna, <a href="/A224339/b224339.txt">Table of n, a(n) for n = 1..1000</a> %F A224339 a(n) = (-1)^n * Sum_{d|n^2} (-1)^d * d. %F A224339 a(n) = A113184(n^2). %F A224339 a(n) = sigma(n^2) for odd n; a(n) = 4*sigma(n^2/2) - sigma(n^2) for even n. - _Andrew Howroyd_, Jul 28 2018 %F A224339 Multiplicative with a(p^e) = 2^(2*e+1)-3 if p=2, and (p^(2*e+1)-1)/(p-1) otherwise. - _Amiram Eldar_, Jul 01 2022 %F A224339 Sum_{k=1..n} a(k) ~ c * n^3, where c = (9*zeta(3))/(2*Pi^2) = 0.548072... . - _Amiram Eldar_, Oct 13 2022 %e A224339 L.g.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 + 155*x^10/10 +... %e A224339 where %e A224339 exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 + 236*x^8 + 434*x^9 + 805*x^10 +...+ A224340(n)*x^n +... %t A224339 dif[n_]:=Module[{divs=Divisors[n^2],od,ev},od=Total[Select[divs,OddQ]];ev=Total[Select[divs,EvenQ]];Abs[od-ev]]; Array[dif,60] (* _Harvey P. Dale_, Jul 16 2015 *) %t A224339 f[p_, e_] := If[p == 2, 2^(2*e + 1) - 3, (p^(2*e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Jul 01 2022 *) %o A224339 (PARI) {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^2, d, (-1)^d*d))} %o A224339 for(n=1,64,print1(a(n),", ")) %o A224339 (PARI) a(n) = if(n%2, sigma(n^2), 4*sigma(n^2/2) - sigma(n^2)) \\ _Andrew Howroyd_, Jul 28 2018 %Y A224339 Cf. A065764, A113184, A224340. %K A224339 nonn,mult %O A224339 1,2 %A A224339 _Paul D. Hanna_, Apr 03 2013