cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224348 Number of nX3 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

10, 100, 788, 5880, 45064, 349280, 2710892, 21021916, 163012744, 1264202660, 9804721360, 76042111360, 589756075600, 4573942739248, 35473931052816, 275123688202096, 2133765358334352, 16548755248130912, 128346493442546640
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Column 3 of A224353

Examples

			Some solutions for n=3
..1..2..2....0..0..1....1..1..1....0..1..2....0..1..1....0..1..1....0..2..2
..0..0..2....1..1..1....1..1..1....0..0..2....2..2..2....1..1..1....0..2..2
..0..0..0....0..2..2....0..0..2....0..0..2....1..1..2....0..0..0....0..0..2
		

Formula

Empirical: a(n) = 10*a(n-1) -16*a(n-2) -24*a(n-3) +164*a(n-4) -516*a(n-5) +140*a(n-6) +956*a(n-7) -1500*a(n-8) +3180*a(n-9) +60*a(n-10)

A224349 Number of n X 4 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

15, 225, 2321, 19608, 160362, 1351748, 11704964, 102319662, 895494806, 7833508842, 68530349850, 599768316699, 5250822841015, 45977188883801, 402610713736831, 3525653178203557, 30874547729660838, 270374890703092436
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2013

Keywords

Comments

Column 4 of A224353.

Examples

			Some solutions for n=3
..0..0..1..1....1..1..1..1....0..0..2..2....0..1..1..2....0..0..1..1
..0..0..0..0....0..1..1..1....0..0..1..2....0..1..1..1....1..2..2..2
..0..0..1..2....1..1..1..1....0..0..0..0....1..1..1..1....0..1..1..2
		

Crossrefs

Cf. A224353.

Formula

Empirical: a(n) = 15*a(n-1) -58*a(n-2) -13*a(n-3) +543*a(n-4) -1609*a(n-5) +1864*a(n-6) -17378*a(n-7) +62814*a(n-8) +73709*a(n-9) -307108*a(n-10) +721338*a(n-11) -862742*a(n-12) +4668915*a(n-13) -12478479*a(n-14) -3206649*a(n-15) +1858428*a(n-16) +5104796*a(n-17) +28929803*a(n-18) +21290844*a(n-19) +12857067*a(n-20) -28005842*a(n-21) -37205324*a(n-22) -26318800*a(n-23) -9161072*a(n-24) -1481856*a(n-25) -6336*a(n-26).

A224350 Number of nX5 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

21, 441, 5840, 57387, 495985, 4231138, 37433596, 342170839, 3178789749, 29672959682, 277160393375, 2589242347971, 24204240827093, 226449704878547, 2120085885822119, 19857888410207651, 186050078426398273
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Column 5 of A224353

Examples

			Some solutions for n=3
..0..0..0..2..2....0..0..0..0..1....1..1..1..1..1....0..0..1..2..2
..1..1..2..2..2....1..1..1..1..2....0..1..1..1..2....1..1..1..2..2
..0..0..0..2..2....0..0..1..1..1....1..1..1..1..1....0..0..0..0..2
		

Formula

Empirical recurrence of order 56 (see link above)

A224351 Number of nX6 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

28, 784, 13052, 151010, 1421762, 12340932, 107694133, 977742699, 9202126546, 88363107023, 855357421083, 8298639299407, 80568348690372, 782845364074773, 7615402149223961, 74171368176011107, 723133239021563347
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Column 6 of A224353

Examples

			Some solutions for n=3
..1..1..1..1..2..2....0..0..0..0..0..0....1..1..1..1..1..2....0..1..1..1..2..2
..1..1..1..1..1..1....0..0..0..1..1..1....0..1..1..2..2..2....1..1..2..2..2..2
..0..0..1..1..1..1....0..1..1..1..2..2....0..0..0..2..2..2....0..0..0..0..0..1
		

Formula

Empirical recurrence of order 98 (see link above)

A224352 Number of nX7 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

36, 1296, 26610, 363392, 3816783, 34697869, 300892325, 2654062881, 24422915139, 233364588801, 2281743365906, 22551656451002, 223794737692968, 2224124508821224, 22127253845604143, 220432254659284132
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Column 7 of A224353

Examples

			Some solutions for n=3
..1..1..1..1..1..2..2....0..0..0..0..0..1..1....1..1..1..1..2..2..2
..0..1..1..1..1..1..2....0..0..1..1..1..1..1....2..2..2..2..2..2..2
..0..1..1..1..1..2..2....0..0..0..0..1..1..2....0..2..2..2..2..2..2
		

A224354 Number of 3 X n 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

27, 216, 788, 2321, 5840, 13052, 26610, 50423, 90012, 152912, 249120, 391589, 596768, 885188, 1282094, 1818123, 2530028, 3461448, 4663724, 6196761, 8129936, 10543052, 13527338, 17186495, 21637788, 27013184, 33460536, 41144813, 50249376
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2013

Keywords

Comments

Row 3 of A224353.

Examples

			Some solutions for n=3:
..0..0..1....1..1..2....2..2..2....0..2..2....0..1..1....1..1..1....0..1..2
..1..1..2....1..1..2....2..2..2....1..1..1....1..1..2....1..1..2....1..1..1
..1..2..2....0..1..1....1..1..2....1..1..1....0..0..0....0..2..2....1..1..2
		

Crossrefs

Cf. A224353.

Formula

Empirical: a(n) = (23/360)*n^6 + (19/40)*n^5 + (235/72)*n^4 + (61/8)*n^3 + (1921/180)*n^2 + (189/10)*n + 3 for n>1.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(27 + 27*x - 157*x^2 + 396*x^3 - 474*x^4 + 326*x^5 - 116*x^6 + 17*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)

A224355 Number of 4 X n 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

81, 1296, 5880, 19608, 57387, 151010, 363392, 810436, 1693423, 3344982, 6292120, 11340202, 19682181, 33037788, 53827802, 85388930, 132235237, 200372476, 297672078, 434311972, 623291815, 881030622, 1228055196, 1689788168
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2013

Keywords

Comments

Row 4 of A224353.

Examples

			Some solutions for n=3:
..2..2..2....0..1..2....0..0..0....0..2..2....0..2..2....0..1..1....1..2..2
..1..1..2....0..2..2....0..0..0....1..1..1....0..1..1....1..2..2....1..1..1
..1..1..1....0..0..1....0..0..2....0..1..2....0..1..1....1..1..2....0..1..2
..0..1..1....0..1..2....0..0..0....0..1..2....0..0..1....0..1..2....0..0..0
		

Crossrefs

Cf. A224353.

Formula

Empirical: a(n) = (41/4032)*n^8 + (9/112)*n^7 + (239/288)*n^6 + (109/24)*n^5 + (12079/576)*n^4 + (39/16)*n^3 + (310151/1008)*n^2 - (21299/84)*n + 142 for n>3.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(81 + 567*x - 2868*x^2 + 6540*x^3 - 6063*x^4 - 415*x^5 + 7550*x^6 - 8564*x^7 + 4918*x^8 - 1584*x^9 + 262*x^10 - 14*x^11) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12.
(End)

A224356 Number of 5Xn 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

243, 7776, 45064, 160362, 495985, 1421762, 3816783, 9630357, 22913143, 51614480, 110565824, 226229854, 443991585, 839005884, 1531899199, 2710956117, 4662807601, 7814081454, 12786980756, 20472326754, 32124242991, 49481371374
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Row 5 of A224353

Examples

			Some solutions for n=3
..1..1..1....0..2..2....0..0..0....0..0..2....1..1..1....0..0..1....0..0..2
..1..2..2....0..1..2....0..2..2....0..1..1....1..1..2....1..1..2....0..2..2
..0..1..1....1..1..2....0..1..2....0..0..0....1..1..2....0..1..1....1..2..2
..1..2..2....1..1..1....0..1..1....0..0..2....0..2..2....0..2..2....2..2..2
..0..1..2....0..0..2....0..0..0....0..0..0....1..1..2....1..1..2....0..0..1
		

Formula

Empirical: a(n) = (1009/907200)*n^10 + (1489/181440)*n^9 + (7699/60480)*n^8 + (26497/30240)*n^7 + (234967/43200)*n^6 + (430969/8640)*n^5 - (23036177/181440)*n^4 + (81980567/45360)*n^3 - (18258277/8400)*n^2 + (3586529/630)*n - 10675 for n>5

A224357 Number of 6Xn 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

729, 46656, 349280, 1351748, 4231138, 12340932, 34697869, 94262290, 246254814, 616242552, 1475123504, 3379586703, 7423803582, 15672970622, 31884279651, 62668814332, 119312143790, 220555944774, 396752366132, 695942226325
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Row 6 of A224353

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..2....0..0..2....0..0..1
..2..2..2....1..2..2....0..1..2....0..0..0....0..0..2....1..1..1....0..1..2
..0..1..2....0..1..1....1..1..2....0..0..1....0..2..2....0..1..1....0..2..2
..0..0..1....1..2..2....0..1..1....0..2..2....0..0..2....1..1..1....1..2..2
..0..0..1....2..2..2....1..1..1....0..2..2....0..1..2....1..1..2....0..2..2
..0..0..1....1..2..2....0..2..2....2..2..2....0..0..0....0..1..2....1..1..1
		

Formula

Empirical: a(n) = (761/8553600)*n^12 + (1733/3326400)*n^11 + (1459/108864)*n^10 + (4187/40320)*n^9 + (1551227/1814400)*n^8 + (72841/12600)*n^7 + (1802801/19440)*n^6 - (66259339/120960)*n^5 + (9020552353/1360800)*n^4 - (817656577/50400)*n^3 + (5508355001/83160)*n^2 - (57456263/1540)*n - 269256 for n>7

A224358 Number of 7Xn 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

2187, 279936, 2710892, 11704964, 37433596, 107694133, 300892325, 834305212, 2288859662, 6150132424, 16041429234, 40392369273, 97941685953, 228592108824, 513973817853, 1114992467592, 2338135911280, 4749060805124, 9361861348424
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Row 7 of A224353

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..2....0..0..2....0..0..1....0..1..2....0..1..1....0..1..1....0..1..1
..0..0..2....0..1..1....0..0..2....0..0..0....0..1..2....0..0..1....0..0..0
..0..0..0....0..1..2....0..2..2....0..0..1....0..0..0....0..1..2....0..0..0
..0..0..2....0..0..1....0..2..2....0..1..1....0..0..2....1..1..2....0..2..2
..0..0..1....0..1..1....0..0..1....0..0..2....2..2..2....1..1..1....0..0..1
..0..1..1....1..1..2....0..2..2....0..2..2....0..1..1....0..1..2....0..0..2
		

Formula

Empirical: a(n) = (118519/21794572800)*n^14 + (2257/124540416)*n^13 + (126449/119750400)*n^12 + (175069/21772800)*n^11 + (49727/544320)*n^10 + (1018841/1451520)*n^9 + (447386489/76204800)*n^8 + (2968546327/21772800)*n^7 - (29364148727/21772800)*n^6 + (37983445967/2177280)*n^5 - (4238661826723/59875200)*n^4 + (1152210830677/3326400)*n^3 - (7620593288311/18918900)*n^2 + (1232004733/910)*n - 8483920 for n>9
Showing 1-10 of 11 results. Next