A224354 Number of 3 X n 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
27, 216, 788, 2321, 5840, 13052, 26610, 50423, 90012, 152912, 249120, 391589, 596768, 885188, 1282094, 1818123, 2530028, 3461448, 4663724, 6196761, 8129936, 10543052, 13527338, 17186495, 21637788, 27013184, 33460536, 41144813, 50249376
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..1....1..1..2....2..2..2....0..2..2....0..1..1....1..1..1....0..1..2 ..1..1..2....1..1..2....2..2..2....1..1..1....1..1..2....1..1..2....1..1..1 ..1..2..2....0..1..1....1..1..2....1..1..1....0..0..0....0..2..2....1..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224353.
Formula
Empirical: a(n) = (23/360)*n^6 + (19/40)*n^5 + (235/72)*n^4 + (61/8)*n^3 + (1921/180)*n^2 + (189/10)*n + 3 for n>1.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(27 + 27*x - 157*x^2 + 396*x^3 - 474*x^4 + 326*x^5 - 116*x^6 + 17*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
Comments