cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224355 Number of 4 X n 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

81, 1296, 5880, 19608, 57387, 151010, 363392, 810436, 1693423, 3344982, 6292120, 11340202, 19682181, 33037788, 53827802, 85388930, 132235237, 200372476, 297672078, 434311972, 623291815, 881030622, 1228055196, 1689788168
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2013

Keywords

Comments

Row 4 of A224353.

Examples

			Some solutions for n=3:
..2..2..2....0..1..2....0..0..0....0..2..2....0..2..2....0..1..1....1..2..2
..1..1..2....0..2..2....0..0..0....1..1..1....0..1..1....1..2..2....1..1..1
..1..1..1....0..0..1....0..0..2....0..1..2....0..1..1....1..1..2....0..1..2
..0..1..1....0..1..2....0..0..0....0..1..2....0..0..1....0..1..2....0..0..0
		

Crossrefs

Cf. A224353.

Formula

Empirical: a(n) = (41/4032)*n^8 + (9/112)*n^7 + (239/288)*n^6 + (109/24)*n^5 + (12079/576)*n^4 + (39/16)*n^3 + (310151/1008)*n^2 - (21299/84)*n + 142 for n>3.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(81 + 567*x - 2868*x^2 + 6540*x^3 - 6063*x^4 - 415*x^5 + 7550*x^6 - 8564*x^7 + 4918*x^8 - 1584*x^9 + 262*x^10 - 14*x^11) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12.
(End)