A224355 Number of 4 X n 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
81, 1296, 5880, 19608, 57387, 151010, 363392, 810436, 1693423, 3344982, 6292120, 11340202, 19682181, 33037788, 53827802, 85388930, 132235237, 200372476, 297672078, 434311972, 623291815, 881030622, 1228055196, 1689788168
Offset: 1
Keywords
Examples
Some solutions for n=3: ..2..2..2....0..1..2....0..0..0....0..2..2....0..2..2....0..1..1....1..2..2 ..1..1..2....0..2..2....0..0..0....1..1..1....0..1..1....1..2..2....1..1..1 ..1..1..1....0..0..1....0..0..2....0..1..2....0..1..1....1..1..2....0..1..2 ..0..1..1....0..1..2....0..0..0....0..1..2....0..0..1....0..1..2....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224353.
Formula
Empirical: a(n) = (41/4032)*n^8 + (9/112)*n^7 + (239/288)*n^6 + (109/24)*n^5 + (12079/576)*n^4 + (39/16)*n^3 + (310151/1008)*n^2 - (21299/84)*n + 142 for n>3.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(81 + 567*x - 2868*x^2 + 6540*x^3 - 6063*x^4 - 415*x^5 + 7550*x^6 - 8564*x^7 + 4918*x^8 - 1584*x^9 + 262*x^10 - 14*x^11) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12.
(End)
Comments