A224356 Number of 5Xn 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
243, 7776, 45064, 160362, 495985, 1421762, 3816783, 9630357, 22913143, 51614480, 110565824, 226229854, 443991585, 839005884, 1531899199, 2710956117, 4662807601, 7814081454, 12786980756, 20472326754, 32124242991, 49481371374
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..1....0..2..2....0..0..0....0..0..2....1..1..1....0..0..1....0..0..2 ..1..2..2....0..1..2....0..2..2....0..1..1....1..1..2....1..1..2....0..2..2 ..0..1..1....1..1..2....0..1..2....0..0..0....1..1..2....0..1..1....1..2..2 ..1..2..2....1..1..1....0..1..1....0..0..2....0..2..2....0..2..2....2..2..2 ..0..1..2....0..0..2....0..0..0....0..0..0....1..1..2....1..1..2....0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1009/907200)*n^10 + (1489/181440)*n^9 + (7699/60480)*n^8 + (26497/30240)*n^7 + (234967/43200)*n^6 + (430969/8640)*n^5 - (23036177/181440)*n^4 + (81980567/45360)*n^3 - (18258277/8400)*n^2 + (3586529/630)*n - 10675 for n>5
Comments