A224357 Number of 6Xn 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
729, 46656, 349280, 1351748, 4231138, 12340932, 34697869, 94262290, 246254814, 616242552, 1475123504, 3379586703, 7423803582, 15672970622, 31884279651, 62668814332, 119312143790, 220555944774, 396752366132, 695942226325
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..2....0..0..2....0..0..1 ..2..2..2....1..2..2....0..1..2....0..0..0....0..0..2....1..1..1....0..1..2 ..0..1..2....0..1..1....1..1..2....0..0..1....0..2..2....0..1..1....0..2..2 ..0..0..1....1..2..2....0..1..1....0..2..2....0..0..2....1..1..1....1..2..2 ..0..0..1....2..2..2....1..1..1....0..2..2....0..1..2....1..1..2....0..2..2 ..0..0..1....1..2..2....0..2..2....2..2..2....0..0..0....0..1..2....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (761/8553600)*n^12 + (1733/3326400)*n^11 + (1459/108864)*n^10 + (4187/40320)*n^9 + (1551227/1814400)*n^8 + (72841/12600)*n^7 + (1802801/19440)*n^6 - (66259339/120960)*n^5 + (9020552353/1360800)*n^4 - (817656577/50400)*n^3 + (5508355001/83160)*n^2 - (57456263/1540)*n - 269256 for n>7
Comments