This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224361 #21 Aug 07 2025 08:35:21 %S A224361 1,2,2,5,3,5,3,1,6,10,5,4,8,11,5,6,4,7,12,6,9,5,2,1,12,2,10,15,4,7,9, %T A224361 14,7,9,16,5,12,5,10,13,4,11,6,6,18,5,5,8,1,3,12,17,5,19,37,7,5,15,13, %U A224361 5,10,17,7,10,38,14,7,6,2,17,8,14,7,2,20,17,15 %N A224361 The length of the Collatz (3k+1) sequence for all odd negative fractions and integers. %C A224361 This sequence is the extension of A210688 with negative values. %C A224361 We consider the triangle T(n,k) = -(n-k)/(2k+1) for n = 1,2,... and k = 0..n-1. %C A224361 The example shown below gives a general idea of this regular triangle. This contains all negative fractions whose denominator is odd and all integers. Now, from T(n,k) we could introduce a 3D triangle in order to produce a complete Collatz sequence starting from each rational T(n,k). %C A224361 The initial triangle T(n,k) begins %C A224361 -1; %C A224361 -2, -1/3; %C A224361 -3, -2/3, -1/5; %C A224361 -4, -3/3, -2/5, -1/7; %C A224361 -5, -4/3, -3/5, -2/7, -1/9; %C A224361 -6, -5/3, -4/5, -3/7, -2/9, -1/11; %C A224361 ... %C A224361 Needs a more precise definition. - _N. J. A. Sloane_, Sep 14 2017 %F A224361 a(n) = A224360(n) + 1. %e A224361 The triangle of lengths begins %e A224361 1; %e A224361 2, 2; %e A224361 5, 3, 5; %e A224361 3, 1, 6, 10; %e A224361 5, 4, 8, 11, 5; %e A224361 ... %e A224361 Individual numbers have the following Collatz sequences (including the first term): %e A224361 [-1] => [1] because -1 -> -1 with 1 iteration; %e A224361 [-2 -1/3] => [2, 2] because: -2 -> -1 => 2 iterations; -1/3 -> 0 => 2 iterations; %e A224361 [-3 -2/3 -1/5] => [5, 3, 5] because: -3 -> -8 -> -4 -> -2 -> -1 => 5 iterations; -2/3 -> -1/3 -> 0 => 3 iterations; -1/5 -> 2/5 -> 1/5 -> 8/5 -> 4/5 => 5 iterations. %t A224361 Collatz2[n_] := Module[{lst = NestWhileList[If[EvenQ[Numerator[#]], #/2, 3 # + 1] &, n, Unequal, All]}, If[lst[[-1]] == -1, lst = Drop[lst, -2], If[lst[[-1]] == 2, lst = Drop[lst, -2], If[lst[[-1]] == 4, lst = Drop[lst, -1], If[MemberQ[Rest[lst], lst[[-1]]], lst = Drop[lst, -1]]]]]]; t = Table[s = Collatz2[-(n - k)/(2*k + 1)]; Length[s], {n, 13}, {k, 0, n - 1}]; Flatten[t] (* program from _T. D. Noe_, adapted for this sequence - see A210688 *) %Y A224361 Cf. A210516, A210688, A224299, A224300, A224360. %K A224361 nonn,tabl %O A224361 1,2 %A A224361 _Michel Lagneau_, Apr 04 2013