cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224377 Number of 5Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

This page as a plain text file.
%I A224377 #6 Jul 23 2025 05:08:02
%S A224377 243,11664,132236,800309,3607078,13831334,48166179,158023549,
%T A224377 497580715,1514359253,4458436636,12678906115,34773215421,91905020703,
%U A224377 234118674737,575345712656,1365918264285,3137981575530,6988511558308,15115188591949
%N A224377 Number of 5Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.
%C A224377 Row 5 of A224374
%H A224377 R. H. Hardin, <a href="/A224377/b224377.txt">Table of n, a(n) for n = 1..210</a>
%F A224377 Empirical: a(n) = (1/1379196149760000)*n^20 + (1/12538146816000)*n^19 + (467/101624979456000)*n^18 + (223/1302884352000)*n^17 + (67777/14944849920000)*n^16 + (8993/99632332800)*n^15 + (29436877/20922789888000)*n^14 + (26572241/1494484992000)*n^13 + (439786693/2299207680000)*n^12 + (20411147/10948608000)*n^11 + (8076494051/459841536000)*n^10 + (1128125897/6967296000)*n^9 + (3054806701103/2179457280000)*n^8 + (547815604487/53374464000)*n^7 + (2418856630291/41513472000)*n^6 + (950711499611/4790016000)*n^5 + (286543564329947/1323241920000)*n^4 - (4310267256629/5513508000)*n^3 + (49217261945707/48886437600)*n^2 + (184937368403/116396280)*n - 3058 for n>3
%e A224377 Some solutions for n=3
%e A224377 ..1..2..0....0..0..0....1..1..1....2..0..0....1..0..0....0..0..1....1..0..0
%e A224377 ..2..0..0....1..2..0....1..2..0....1..0..0....1..1..1....0..1..0....0..1..0
%e A224377 ..0..0..0....2..0..0....2..0..0....1..0..0....2..2..2....2..1..0....2..1..0
%e A224377 ..0..0..0....1..1..1....2..2..1....2..1..0....2..2..2....1..1..1....2..1..0
%e A224377 ..2..2..1....2..1..0....2..2..0....1..2..2....2..2..1....2..2..2....2..2..1
%K A224377 nonn
%O A224377 1,1
%A A224377 _R. H. Hardin_ Apr 05 2013