cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224378 Number of 6Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

This page as a plain text file.
%I A224378 #6 Jul 23 2025 05:08:08
%S A224378 729,69984,1126072,8297747,42132769,174854516,644368221,2212959866,
%T A224378 7296488462,23473954511,74124038709,229565868000,694675751863,
%U A224378 2045339262040,5840640774160,16145608364197,43177424328109
%N A224378 Number of 6Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.
%C A224378 Row 6 of A224374
%H A224378 R. H. Hardin, <a href="/A224378/b224378.txt">Table of n, a(n) for n = 1..210</a>
%F A224378 Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/228261785149440000)*n^23 + (2993/8515157028618240000)*n^22 + (1189/64508765368320000)*n^21 + (565139/810967336058880000)*n^20 + (50213/2502985605120000)*n^19 + (102275011/224083079700480000)*n^18 + (630450937/74694359900160000)*n^17 + (6860509793/52725430517760000)*n^16 + (7572768857/4393785876480000)*n^15 + (1975549547/96566722560000)*n^14 + (5979889787/26153487360000)*n^13 + (129750858133763/52725430517760000)*n^12 + (8852225741519/337983528960000)*n^11 + (1757155928198569/6590678814720000)*n^10 + (11208897154284701/4393785876480000)*n^9 + (15905213251807771/762187345920000)*n^8 + (60693804091491173/444609285120000)*n^7 + (56813409423945822743/88699552381440000)*n^6 + (45278410760324474101/29566517460480000)*n^5 - (4851359450955021973/4927752910080000)*n^4 - (59510428654061699/5133075948000)*n^3 + (926682017129053/38440617600)*n^2 + (89190882279703/5354228880)*n - 49724 for n>4
%e A224378 Some solutions for n=3
%e A224378 ..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
%e A224378 ..0..1..0....0..0..2....1..1..0....1..0..0....1..0..0....0..1..0....0..0..0
%e A224378 ..2..2..0....0..2..0....1..0..0....0..2..1....2..2..2....2..2..0....2..1..0
%e A224378 ..2..0..0....2..0..0....2..0..0....2..2..1....2..2..0....2..0..0....1..1..2
%e A224378 ..2..1..1....1..0..0....0..2..2....2..2..1....2..2..0....1..0..0....1..2..0
%e A224378 ..2..1..0....0..1..0....2..2..0....2..2..1....2..2..2....2..1..0....2..1..0
%K A224378 nonn
%O A224378 1,1
%A A224378 _R. H. Hardin_ Apr 05 2013