This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224380 #16 Sep 08 2022 08:46:04 %S A224380 11,19,27,35,51,59,67,99,115,123,131,195,227,243,251,259,387,451,483, %T A224380 499,507,515,771,899,963,995,1011,1019,1027,1539,1795,1923,1987,2019, %U A224380 2035,2043,2051,3075,3587,3843,3971,4035,4067,4083,4091,4099,6147,7171,7683,7939,8067,8131,8163,8179 %N A224380 Table read by antidiagonals of numbers of form (2^n -1)*2^(m+2) + 3 where n>=1, m>=1. %C A224380 The table has row labels 2^n - 1 and column labels 2^(m+2). The table entry is row*col + 3. A MAGMA program is provided that generates the numbers in a table format. The sequence is read along the antidiagonals starting from the top left corner. Using the lexicographic ordering of A057555 the sequence is: %C A224380 A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)... %C A224380 +3 | 8 16 32 64 128 256 512 ... %C A224380 ----|------------------------------------------- %C A224380 1 | 11 19 35 67 131 259 515 %C A224380 3 | 27 51 99 195 387 771 1539 %C A224380 7 | 59 115 227 451 899 1795 3587 %C A224380 15 | 123 243 483 963 1923 3843 7683 %C A224380 31 | 251 499 995 1987 3971 7939 15875 %C A224380 63 | 507 1011 2019 4035 8067 16131 32259 %C A224380 127 | 1019 2035 4067 8131 16259 32515 65027 %C A224380 ... %C A224380 All of these numbers have the following property: let m be a member of A(n); if a sequence B(n) = all i such that i XOR (m - 1) = i - (m - 1), then the differences between successive members of B(n) is an alternating series of 1's and 3's with the last difference in the pattern m. The number of alternating 1's and 3's in the pattern is 2^(j+1) - 1, where j is the column index. %C A224380 As an example consider A(1) which is 11, the sequence B(n) where i XOR 10 = i - 10 starts as 10, 11, 14, 15, 26, 27, 30, 31, 42, ... (A214864) with successive differences of 1, 3, 1, 11. %C A224380 Main diagonal is A191341, the largest k such that k-1 and k+1 in binary representation have the same number of 1's and 0's %H A224380 Brad Clardy, <a href="/A224380/b224380.txt">Table of n, a(n) for n = 1..1000</a> %F A224380 a(n) = 2^(A057555(2*n - 1))*2^(A057555(2*n) + 2) + 3 for n>=1. %o A224380 (Magma) %o A224380 //program generates values in a table form,row labels of 2^i -1 %o A224380 for i:=1 to 10 do %o A224380 m:=2^i - 1; %o A224380 m, [ m*2^n +1 : n in [1..10]]; %o A224380 end for; %o A224380 //program generates sequence in lexicographic ordering of A057555, read %o A224380 //along antidiagonals from top. Primes in the sequence are marked with *. %o A224380 for i:=2 to 18 do %o A224380 for j:=1 to i-1 do %o A224380 m:=2^j -1; %o A224380 k:=m*2^(2+i-j) + 3; %o A224380 if IsPrime(k) then k, "*"; %o A224380 else k; %o A224380 end if;; %o A224380 end for; %o A224380 end for; %Y A224380 Cf. A057555(lexicographic ordering), A214864(example), A224195. %Y A224380 Rows: A062729(i=1), A147595(2 n>=5), A164285(3 n>=3). %Y A224380 Cols: A168616(j=1 n>=4). %Y A224380 Diagonal: A191341. %K A224380 tabl,nonn %O A224380 1,1 %A A224380 _Brad Clardy_, Apr 05 2013