cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224392 Number of 3 X n 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

64, 1000, 6094, 27790, 102232, 319769, 881519, 2196522, 5038720, 10788462, 21789398, 41858498, 76994510, 136338455, 233448747, 387963222, 627730762, 991506308, 1532314870, 2321602662, 3454306716, 5054988261, 7285189791
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2013

Keywords

Comments

Row 3 of A224391.

Examples

			Some solutions for n=3:
..0..1..1....0..1..1....1..1..2....0..0..1....0..1..1....1..1..3....0..2..2
..2..2..2....0..0..1....2..3..3....2..2..2....2..2..2....1..2..3....1..2..3
..0..2..2....0..0..0....1..1..2....1..3..3....0..0..1....1..3..3....0..3..3
		

Crossrefs

Cf. A224391.

Formula

Empirical: a(n) = (353/181440)*n^9 + (17/560)*n^8 + (9731/30240)*n^7 + (1283/720)*n^6 + (52457/8640)*n^5 + (776/45)*n^4 + (294499/11340)*n^3 + (28837/2520)*n^2 + (8207/126)*n - 18 for n>1.
Conjectures from Colin Barker, Aug 30 2018: (Start)
G.f.: x*(64 + 360*x - 1026*x^2 + 4170*x^3 - 7998*x^4 + 10591*x^5 - 9351*x^6 + 5629*x^7 - 2165*x^8 + 478*x^9 - 46*x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)