cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224394 Number of 5Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

1024, 100000, 1268572, 8573507, 45648753, 211856287, 882833522, 3343528551, 11604617405, 37199618077, 110964317169, 310166468938, 817551602005, 2043560704475, 4868244723248, 11101332102787, 24326305539913
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 5 of A224391

Examples

			Some solutions for n=3
..0..0..0....0..0..2....0..0..2....0..0..2....0..0..2....0..2..2....0..2..2
..2..2..3....1..2..2....1..2..2....0..2..2....1..2..3....1..2..3....1..2..3
..2..2..2....1..1..2....1..2..2....0..2..3....2..3..3....1..2..3....0..2..2
..1..2..2....0..2..2....0..2..3....0..2..2....2..3..3....1..1..2....0..2..3
..1..1..2....1..3..3....2..2..2....1..3..3....2..3..3....0..1..3....0..2..3
		

Formula

Empirical: a(n) = (769/444787200)*n^15 + (348923/10897286400)*n^14 + (1834741/3113510400)*n^13 + (1653961/239500800)*n^12 + (15881209/239500800)*n^11 + (3185767/4354560)*n^10 + (6331231/21772800)*n^9 + (8051546371/152409600)*n^8 - (92949613/680400)*n^7 + (29776075747/21772800)*n^6 - (235108166129/119750400)*n^5 + (1142919607439/59875200)*n^4 - (2395878032771/43243200)*n^3 + (4577919285997/37837800)*n^2 - (3999067013/10010)*n + 824171 for n>7