A224394 Number of 5Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
1024, 100000, 1268572, 8573507, 45648753, 211856287, 882833522, 3343528551, 11604617405, 37199618077, 110964317169, 310166468938, 817551602005, 2043560704475, 4868244723248, 11101332102787, 24326305539913
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..2....0..0..2....0..0..2....0..0..2....0..2..2....0..2..2 ..2..2..3....1..2..2....1..2..2....0..2..2....1..2..3....1..2..3....1..2..3 ..2..2..2....1..1..2....1..2..2....0..2..3....2..3..3....1..2..3....0..2..2 ..1..2..2....0..2..2....0..2..3....0..2..2....2..3..3....1..1..2....0..2..3 ..1..1..2....1..3..3....2..2..2....1..3..3....2..3..3....0..1..3....0..2..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (769/444787200)*n^15 + (348923/10897286400)*n^14 + (1834741/3113510400)*n^13 + (1653961/239500800)*n^12 + (15881209/239500800)*n^11 + (3185767/4354560)*n^10 + (6331231/21772800)*n^9 + (8051546371/152409600)*n^8 - (92949613/680400)*n^7 + (29776075747/21772800)*n^6 - (235108166129/119750400)*n^5 + (1142919607439/59875200)*n^4 - (2395878032771/43243200)*n^3 + (4577919285997/37837800)*n^2 - (3999067013/10010)*n + 824171 for n>7
Comments