cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224395 Number of 6Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

This page as a plain text file.
%I A224395 #6 Jul 23 2025 05:09:22
%S A224395 4096,1000000,18794636,152271025,879830242,4364554008,19879000458,
%T A224395 84675848787,337896379016,1262027034092,4414609771988,14497401758306,
%U A224395 44849313719663,131213360082438,364483316826362,964981060109623
%N A224395 Number of 6Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
%C A224395 Row 6 of A224391
%H A224395 R. H. Hardin, <a href="/A224395/b224395.txt">Table of n, a(n) for n = 1..96</a>
%F A224395 Empirical: a(n) = (42587101/1600593426432000)*n^18 + (83940121/177843714048000)*n^17 + (351548291/31384184832000)*n^16 + (404522743/2615348736000)*n^15 + (2603179801/1426553856000)*n^14 + (13975516589/747242496000)*n^13 + (1018677008761/3621252096000)*n^12 - (71772294491/67060224000)*n^11 + (9590385658061/219469824000)*n^10 - (19294207174217/73156608000)*n^9 + (6061000683461531/2414168064000)*n^8 - (67636294337629/7185024000)*n^7 + (580563104944166119/11769069312000)*n^6 + (14843452118300317/653837184000)*n^5 - (42702408306785177/59439744000)*n^4 + (14422633437701933/3027024000)*n^3 - (272645035897423741/15437822400)*n^2 + (10375478018905/1225224)*n + 82732433 for n>10
%e A224395 Some solutions for n=3
%e A224395 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e A224395 ..0..0..0....0..0..2....0..0..2....0..0..2....0..0..0....0..0..2....0..0..2
%e A224395 ..0..2..3....0..2..2....2..2..3....0..2..2....2..2..2....2..2..2....0..2..2
%e A224395 ..0..3..3....0..2..3....0..2..3....2..2..2....0..2..2....2..2..3....0..2..3
%e A224395 ..1..2..3....0..0..1....0..1..1....0..2..3....1..3..3....2..2..3....3..3..3
%e A224395 ..1..3..3....0..0..2....0..2..3....0..0..1....0..1..1....0..0..1....0..2..2
%K A224395 nonn
%O A224395 1,1
%A A224395 _R. H. Hardin_ Apr 05 2013