This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224399 #4 Apr 06 2013 15:13:31 %S A224399 1,2,4,8,13,16,26,32,35,52,64,70,81,93,104,128,140,162,181,186,208, %T A224399 241,256,280,324,362,372,416,455,482,483,512,543,560,607,643,645,648, %U A224399 724,744,809,815,832,903,910,914,915,964,966,967,1024,1079,1081,1086,1087 %N A224399 Numbers k such that A224166(k) = A008908(k). %C A224399 Numbers k for which the number of iterations starting with -k to reach the last number of the cycle equals the number of iterations starting with k to reach 1 in Collatz (3x+1) trajectory of +/-k. %e A224399 a(6) = 26 because A224166(26) = A008908(26) = 11. %e A224399 The trajectory of - 26 is : %e A224399 -26 -> - 13 -> -38 -> -19 -> -56 -> -28 -> -14 -> -7 -> -20 -> -10 -> -5 with 11 iterations (the first value is counted); %e A224399 The trajectory of 26 is : %e A224399 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 with 11 iterations (the first value is counted). %p A224399 z:={1}: %p A224399 for m from -1 by -1 to -1500 do: %p A224399 lst:={m}:a:=0: x:=m: lst:=lst union {x}: %p A224399 for i from 1 to 100 do: %p A224399 lst:=lst union {x}: %p A224399 if irem(abs(x), 2)=1 %p A224399 then %p A224399 x:=3*x+1: lst:=lst union {x}: %p A224399 else %p A224399 x:=x/2: lst:=lst union {x}: %p A224399 fi: %p A224399 od: %p A224399 n0:=nops(lst): %p A224399 if lst intersect z = {1} %p A224399 then %p A224399 n1:=n0-2: %p A224399 else %p A224399 n1:=n0-1: %p A224399 fi: %p A224399 a:=0:y:=-m: %p A224399 for it from 1 to 100 while (y>1) do: %p A224399 if irem(y,2)=0 %p A224399 then %p A224399 y := y/2:a:=a+1: %p A224399 else %p A224399 y := 3*y+1: a := a+1: %p A224399 fi: %p A224399 od: %p A224399 if n1=a %p A224399 then %p A224399 printf(`%d, `,-m): %p A224399 else %p A224399 fi: %p A224399 od: %Y A224399 Cf. A008908, A224166. %K A224399 nonn %O A224399 1,2 %A A224399 _Michel Lagneau_, Apr 05 2013