cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224407 Number of n X 6 0..1 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

22, 169, 879, 3902, 16420, 68282, 284254, 1187830, 4979464, 20913026, 87905004, 369597368, 1554028138, 6533901986, 27470619810, 115492192540, 485546657850, 2041301158120, 8581884687952, 36079321433650, 151682073514422
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2013

Keywords

Comments

Column 6 of A224409.

Examples

			Some solutions for n=3:
..0..0..0..0..0..0....0..0..0..0..0..1....1..0..0..0..0..0....0..0..0..1..0..0
..0..0..0..0..1..0....0..0..0..1..1..1....0..1..1..1..0..0....0..0..1..1..0..0
..0..0..1..1..1..0....0..1..1..1..1..0....1..1..1..0..0..0....1..1..1..0..0..0
		

Crossrefs

Cf. A224409.

Formula

Empirical: a(n) = 7*a(n-1) -14*a(n-2) +9*a(n-3) +4*a(n-5) +16*a(n-6) for n>7.
Empirical g.f.: x*(22 + 15*x + 4*x^2 - 83*x^3 - 109*x^4 - 29*x^5 + 14*x^6) / (1 - 7*x + 14*x^2 - 9*x^3 - 4*x^5 - 16*x^6). - Colin Barker, Aug 30 2018