A224410 Number of 3 X n 0..1 arrays with rows unimodal and antidiagonals nondecreasing.
8, 36, 100, 228, 465, 879, 1568, 2668, 4362, 6890, 10560, 15760, 22971, 32781, 45900, 63176, 85612, 114384, 150860, 196620, 253477, 323499, 409032, 512724, 637550, 786838, 964296, 1174040, 1420623, 1709065, 2044884, 2434128, 2883408, 3399932
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..0....1..0..0....1..0..0....1..1..0....1..1..0....1..1..0....0..1..1 ..1..1..0....0..1..0....1..1..0....1..0..0....1..0..0....1..1..0....1..1..1 ..1..0..0....1..0..0....1..1..1....0..0..0....1..1..0....1..1..0....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224409.
Formula
Empirical: a(n) = (1/720)*n^6 + (1/48)*n^5 + (29/144)*n^4 + (13/16)*n^3 + (2087/360)*n^2 + (7/6)*n.
Conjectures from Colin Barker, Aug 30 2018: (Start)
G.f.: x*(8 - 20*x + 16*x^2 + 4*x^3 - 11*x^4 + 4*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments