cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224410 Number of 3 X n 0..1 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

8, 36, 100, 228, 465, 879, 1568, 2668, 4362, 6890, 10560, 15760, 22971, 32781, 45900, 63176, 85612, 114384, 150860, 196620, 253477, 323499, 409032, 512724, 637550, 786838, 964296, 1174040, 1420623, 1709065, 2044884, 2434128, 2883408, 3399932
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2013

Keywords

Comments

Row 3 of A224409.

Examples

			Some solutions for n=3:
..0..1..0....1..0..0....1..0..0....1..1..0....1..1..0....1..1..0....0..1..1
..1..1..0....0..1..0....1..1..0....1..0..0....1..0..0....1..1..0....1..1..1
..1..0..0....1..0..0....1..1..1....0..0..0....1..1..0....1..1..0....1..1..0
		

Crossrefs

Cf. A224409.

Formula

Empirical: a(n) = (1/720)*n^6 + (1/48)*n^5 + (29/144)*n^4 + (13/16)*n^3 + (2087/360)*n^2 + (7/6)*n.
Conjectures from Colin Barker, Aug 30 2018: (Start)
G.f.: x*(8 - 20*x + 16*x^2 + 4*x^3 - 11*x^4 + 4*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)