A224411 Number of 4 X n 0..1 arrays with rows unimodal and antidiagonals nondecreasing.
16, 108, 358, 884, 1928, 3902, 7490, 13784, 24467, 42053, 70195, 114073, 180875, 280385, 425693, 634043, 927836, 1335806, 1894388, 2649298, 3657346, 4988504, 6728252, 8980226, 11869193, 15544379, 20183177, 25995263, 33227149, 42167203
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....1..1..0....0..0..0 ..0..0..1....0..0..0....1..1..0....0..1..1....1..1..0....1..1..0....1..0..0 ..0..1..0....1..1..1....1..1..1....1..1..1....1..0..0....1..1..0....0..1..0 ..1..0..0....1..1..1....1..1..1....1..1..0....0..1..0....1..0..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224409.
Formula
Empirical: a(n) = (1/40320)*n^8 + (1/1440)*n^7 + (31/2880)*n^6 + (13/144)*n^5 + (3767/5760)*n^4 + (6409/1440)*n^3 + (189859/10080)*n^2 - (73/24)*n - 7 for n>2.
Conjectures from Colin Barker, Aug 30 2018: (Start)
G.f.: x*(16 - 36*x - 38*x^2 + 206*x^3 - 196*x^4 - 106*x^5 + 368*x^6 - 334*x^7 + 155*x^8 - 38*x^9 + 4*x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
Comments