A224413 Number of 6Xn 0..1 arrays with rows unimodal and antidiagonals nondecreasing.
64, 972, 4636, 13440, 31710, 68282, 139638, 275766, 530583, 999049, 1844709, 3342831, 5946316, 10384152, 17805490, 29986574, 49622914, 80735424, 129226948, 203634878, 316136662, 483878162, 730710330, 1089437826, 1604704333
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..0....0..1..1....1..1..1....1..0..0....1..1..0....1..1..0....0..0..0 ..1..0..0....1..1..1....1..1..0....1..0..0....1..0..0....1..0..0....1..0..0 ..0..1..0....1..1..1....1..1..1....0..0..0....0..0..0....1..0..0....0..1..1 ..1..0..0....1..1..0....1..1..1....0..0..0....1..0..0....1..0..0....1..1..0 ..0..0..1....1..0..0....1..1..0....1..1..0....1..1..1....1..1..0....1..0..0 ..1..1..0....0..0..0....1..1..0....1..1..1....1..1..1....1..0..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/479001600)*n^12 + (1/7257600)*n^11 + (199/43545600)*n^10 + (1/10752)*n^9 + (19951/14515200)*n^8 + (5143/345600)*n^7 + (6148357/43545600)*n^6 + (3015961/1451520)*n^5 + (128983289/10886400)*n^4 + (40193333/604800)*n^3 + (444089893/1663200)*n^2 - (4351/20)*n - 222 for n>4
Comments