A224417 Least prime p such that sum_{k=0}^n B_k*x^{n-k} is irreducible modulo p, where B_k refers to the Bell number A000110(k).
2, 3, 2, 11, 3, 2, 193, 113, 2, 29, 71, 167, 19, 3, 7, 13, 199, 5, 101, 59, 13, 41, 3, 359, 7, 11, 2, 31, 197, 139, 3, 59, 2, 139, 83, 37, 23, 193, 587, 199, 67, 47, 401, 41, 571, 73, 1063, 229, 1163, 47, 53, 239, 347, 223, 577, 499, 271, 269, 11, 179
Offset: 1
Keywords
Examples
a(5) = 3 since the polynomial sum_{k=0}^5 B_5*x^{5-k} = x^5+x^4+2*x^3+5*x^2+15*x+52 is irreducible modulo 3 but reducible modulo 2. Note also that a(7) = 193 < 4*7^2-1 = 195.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..300
Crossrefs
Programs
-
Mathematica
A[n_,x_]:=A[n,x]=Sum[BellB[k]*x^(n-k),{k,0,n}] Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[4n^2-2]}]; Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]
Comments