A224448 Nonnegative numbers that have a representation as a sum of three primitive and distinct squares (square 0 allowed).
5, 10, 13, 14, 17, 21, 25, 26, 29, 30, 34, 35, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54, 58, 59, 61, 62, 65, 66, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 85, 86, 89, 90, 91, 93, 94, 97, 98, 101, 105, 106, 107, 109, 110, 113, 114, 115, 117, 118, 121, 122, 125, 126, 129, 130
Offset: 1
Keywords
Examples
Denote a representation in question by the triple [a, b, c]. The representations for n= 1, 2, ..., 10 are: n=1, 5: [0, 1, 2], n=2, 10: [0, 1, 3], n=3, 13: [0, 2, 3], n=4, 14: [1, 2, 3], n=5, 17: [0, 1, 4], [2, 2, 3], n=6, 21: [1, 2, 4], n=7, 25: [0, 0, 5], [0, 3, 4], n=8, 26: [0, 1, 5], [1, 3, 4], n=9, 29: [0, 2, 5], [2, 3, 4] n=10, 30: [1, 2, 5].
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- F. Halter-Koch, Darstellung natürlicher Zahlen als Summe von Quadraten, Acta Arith. 42 (1982) 11-20, pp. 13 and 11.
Programs
-
Mathematica
representableQ[n_] := Length[ Select[ PowersRepresentations[n, 3, 2], Unequal @@ # && GCD @@ # == 1 & ]] > 0; Select[ Range[130], representableQ] (* Jean-François Alcover, Apr 10 2013 *)
Formula
a(n) is the n-th largest number m satisfying m = a^2 + b^2 + c^2, with a, b, and c integers, 0 <= a < b < c, and gcd(a,b,c) = 1.
a(n) is the n-th largest number m for which A224447(m) > 0.
Comments