cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224455 The hyper-Wiener index of the linear phenylene with n hexagons.

This page as a plain text file.
%I A224455 #21 Dec 09 2016 03:41:37
%S A224455 42,396,1656,4740,10890,21672,38976,65016,102330,153780,222552,312156,
%T A224455 426426,569520,745920,960432,1218186,1524636,1885560,2307060,2795562,
%U A224455 3357816,4000896,4732200,5559450,6490692,7534296,8698956,9993690,11427840,13011072,14753376,16665066,18756780,21039480
%N A224455 The hyper-Wiener index of the linear phenylene with n hexagons.
%C A224455 a(2) and a(5) have been checked by the direct computation of the hyper-Wiener index (using Maple).
%D A224455 I. Gutman, The topological indices of linear phenylenes, J. Serb. Chem. Soc., 60, No. 2, 1995, 99-104.
%H A224455 G. C. Greubel, <a href="/A224455/b224455.txt">Table of n, a(n) for n = 1..1000</a>
%H A224455 G. Cash, S. Klavzar, M. Petkovsek, <a href="http://pubs.acs.org/doi/abs/10.1021/ci0100999">Three methods for calculation of the hyper-Wiener index of a molecular graph</a>, J. Chem. Inf. Comput. Sci. 42, 2002, 571-576.
%H A224455 L. Pavlovic, I. Gutman, <a href="http://pubs.acs.org/doi/abs/10.1021/ci960153z">Wiener numbers of phenylenes: an exact result</a>, J. Chem. Inf. Comput. Sci. 37, 1997, 355-358.
%H A224455 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A224455 a(n) = (3/2)*n*(n+1)*(9*n^2 + 3*n + 2).
%F A224455 G.f.: 6*x*(7 + 31*x + 16*x^2)/(1-x)^5.
%F A224455 The Hosoya polynomial of the linear phenylene with n hexagons is nt(t^3-t^2-4t-8)/(t-1) + 2t(t+1)(t^(3n)-1)/(t-1)^2.
%F A224455 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - _G. C. Greubel_, Dec 08 2016
%p A224455 a := proc (n) options operator, arrow: (3/2)*n*(n+1)*(9*n^2+3*n+2) end proc: seq(a(n), n = 1 .. 35);
%t A224455 LinearRecurrence[{5,-10,10,-5,1}, {42,396,1656,4740,10890}, 100] (* or *) Table[(3/2)*n*(n+1)*(9*n^2 + 3*n + 2), {n,1,100}] (* _G. C. Greubel_, Dec 08 2016 *)
%o A224455 (PARI) Vec(6*x*(7 + 31*x + 16*x^2)/(1-x)^5 + O(x^50)) \\ _G. C. Greubel_, Dec 08 2016
%Y A224455 Cf. A224454.
%K A224455 nonn,easy
%O A224455 1,1
%A A224455 _Emeric Deutsch_, Apr 10 2013