A224476 (2*16^(5^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 1.
6, 1, 251, 3751, 68751, 718751, 9218751, 24218751, 74218751, 8574218751, 13574218751, 663574218751, 5163574218751, 30163574218751, 980163574218751, 2480163574218751, 37480163574218751, 987480163574218751, 487480163574218751, 65487480163574218751
Offset: 1
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Trimorphic Number
- Index entries for sequences related to automorphic numbers
Crossrefs
Programs
-
Sage
def A224476(n) : return crt(2^(n-1)-1, 1, 2^n, 5^n)
Formula
a(n) = (A224474(n) + 10^n/2) mod 10^n.
Comments