A224477 (5^(2^n) + (10^n)/2) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 5.
0, 75, 125, 5625, 40625, 390625, 7890625, 62890625, 712890625, 3212890625, 68212890625, 418212890625, 4918212890625, 9918212890625, 759918212890625, 1259918212890625, 6259918212890625, 756259918212890625, 7256259918212890625, 42256259918212890625
Offset: 1
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Trimorphic Number
- Index entries for sequences related to automorphic numbers
Crossrefs
Programs
-
Sage
def A224477(n) : return crt(2^(n-1)+1, 0, 2^n, 5^n)
Formula
a(n) = (A007185(n) + 10^n/2) mod 10^n.
Comments