A224478 (16^(5^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 5.
0, 25, 875, 4375, 59375, 609375, 2109375, 37109375, 287109375, 6787109375, 31787109375, 581787109375, 5081787109375, 90081787109375, 240081787109375, 8740081787109375, 93740081787109375, 243740081787109375, 2743740081787109375, 57743740081787109375
Offset: 1
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Trimorphic Number
- Index entries for sequences related to automorphic numbers
Crossrefs
Programs
-
Sage
def A224478(n) : return crt(2^(n-1)-1, 0, 2^n, 5^n)
Formula
a(n) = (A016090(n) + 10^n/2 - 1) mod 10^n.
Comments