A224479 a(n) = Product_{k=1..n} Product_{i=1..k-1} gcd(k,i).
1, 1, 1, 1, 2, 2, 24, 24, 384, 3456, 276480, 276480, 955514880, 955514880, 428070666240, 866843099136000, 1775294667030528000, 1775294667030528000, 331312591939905257472000, 331312591939905257472000, 339264094146462983651328000000
Offset: 0
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..97
- OEIS Wiki, Generalizations of the factorial
Programs
-
Maple
A224479 := proc(n) local h, k, d; mul(mul(d^phi(k/d), d = divisors(k) minus {k}), k = 1..n) end: seq(A224479(i), i = 0..20);
-
Mathematica
a[n_] := Product[ d^EulerPhi[k/d], {k, 1, n}, {d, Divisors[k] // Most}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
-
PARI
a(n)=prod(k=1,n,my(s=1);fordiv(k,d,d
Charles R Greathouse IV, Jun 27 2013 -
Sage
def A224479(n): R = 1; for p in primes(n): s = 0; r = n while r > 0 : r = r//p s += r*(r-1) R *= p^(s/2) return R [A224479(i) for i in (0..20)]
Formula
a(n) = Product_{k=1..n} Product_{d divides k, d < k} d^phi(k/d).
n! * a(n)^2 = A092287(n).
a(n)/a(n-1) = A051190(n) for n >= 1.
a(n) = sqrt(A092287(n) / n!). - Daniel Forgues, Apr 14 2013
Comments