cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224483 Numbers which are the sum of two positive cubes and divisible by 29.

This page as a plain text file.
%I A224483 #29 Sep 08 2022 08:46:04
%S A224483 6119,6293,6641,7163,7859,8729,9773,10991,12383,13949,15689,17603,
%T A224483 19691,21953,48778,48952,49474,50344,51562,53128,55042,57304,59914,
%U A224483 62872,66178,69832,73834,78184,82882,87928,93322,99064,105154
%N A224483 Numbers which are the sum of two positive cubes and divisible by 29.
%C A224483 If 12*h-2523 is a square then some values of 29*h are in this sequence.
%C A224483 It is easy to verify that h is of the form 3*m^2-9*m+217, and therefore 29*(3*m^2-9*m+217) = (16-m)^3+(m+13)^3. [_Bruno Berselli_, May 10 2013]
%H A224483 Vincenzo Librandi, <a href="/A224483/b224483.txt">Table of n, a(n) for n = 1..1000</a>
%t A224483 upto[n_] := Block[{t}, Union@Reap[ Do[If[Mod[t = x^3 + y^3, 29] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[106000] (* _Giovanni Resta_, Jun 12 2020 *)
%o A224483 (Magma) [n: n in [2..2*10^5] | exists{i: i in [1..Iroot(n-1,3)] | IsPower(n-i^3,3) and IsZero(n mod 29)}]; // _Bruno Berselli_, May 10 2013
%Y A224483 Cf. numbers which are the sum of two positive cubes and divisible by k: A101421 (k=7), A101852 (k=11), A094447 (k=13), A099178 (k=17), A102619 (k=19), A101806 (k=23), A102658 (k=31), A102618 (k=37).
%K A224483 nonn,easy
%O A224483 1,1
%A A224483 _Vincenzo Librandi_, May 08 2013