A224487 Least integer b > F(n) such that sum_{k=1}^n F(k)*b^{k-1} is prime, where F = A000045.
2, 4, 4, 6, 10, 39, 102, 44, 165, 96, 154, 446, 406, 714, 999, 1634, 2698, 5445, 7630, 11670, 17833, 28758, 46686, 75178, 121782, 197890, 319081, 522734, 840924
Offset: 2
Keywords
Examples
a(6) = 10 since sum_{k=0}^6 F(k)*10^{k-1} = 853211 is prime but sum_{k=0}^6 F(k)*9^{k-1} = 507556 is composite.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..49
Programs
-
Mathematica
A[n_,x_]:=A[n,x]=Sum[Fibonacci[k]*x^(k-1),{k,1,n}] Do[Do[Do[If[PrimeQ[A[n,s]]==True,Print[n," ",s];Goto[aa]],{s,Fibonacci[n]+1,Fibonacci[n+4]-1}]; Print[n," ",counterexample];Label[aa];Continue,{n,2,20}]]
Comments