This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224497 #12 Aug 02 2019 05:27:14 %S A224497 1,1,1,1,2,2,12,12,96,288,5760,5760,829440,829440,46448640,2090188800, %T A224497 267544166400,267544166400,346737239654400,346737239654400, %U A224497 1109559166894080000,209706682542981120000,73816752255129354240000,73816752255129354240000 %N A224497 a(n) = sqrt(floor(n/2)! * Product_{k=1..n} Product_{i=1..k-1} gcd(k,i)). %C A224497 The order of the primes in the prime factorization of a(n) is given by %C A224497 ord_{p}(a(n)) = (1/4)*Sum_{i>=1} floor(n/p^i)*(floor(n/p^i)-1) + (1/2)*Sum_{i>=1} floor(floor(n/2)/p^i). %C A224497 For n > 1: a(n) = a(n-1) if and only if n is prime. %F A224497 a(n) = sqrt(floor(n/2)! * A224479(n)). %F A224497 A092287(n) = A056040(n) * a(n)^4. %p A224497 A224497 := n -> sqrt(iquo(n,2)!*mul(mul(igcd(k,i), i=1..k-1), k=1..n)): %p A224497 seq(A224497(i), i = 0..23); %o A224497 (Sage) %o A224497 def A224497(n): %o A224497 R = 1; %o A224497 for p in primes(n): %o A224497 s = 0; t = 0 %o A224497 r = n; u = n//2 %o A224497 while r > 0 : %o A224497 r = r//p; u = u//p %o A224497 t += u; s += r*(r-1) %o A224497 R *= p^((t+s/2)/2) %o A224497 return R %o A224497 [A224497(i) for i in (0..23)] %Y A224497 Cf. A224479. %K A224497 nonn %O A224497 0,5 %A A224497 _Peter Luschny_, Apr 08 2013