This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224500 #27 Jan 05 2021 00:04:02 %S A224500 1,4,21,184,2425,42396,916909,23569456,701312049,23697421300, %T A224500 896146948741,37491632258664,1719091662617641,85724109916049164, %U A224500 4618556912276116125,267351411229327901536,16547551265061986364769,1090506038795558789135076,76234505063400211010327029 %N A224500 Number of ordered full binary trees with labels from a set of at most n labels. %C A224500 a(n) is also the maximum number of different operations with n operands for a non-associative non-commutative binary operator. %C A224500 a(n) is also the second column of A185946. %H A224500 Laurent Orseau, <a href="/A224500/b224500.txt">Table for n, a(n) for n = 1..350</a> %F A224500 a(n) = Sum_{k=1..n} permutations(n, k)*Catalan(k-1); %F A224500 a(n) = Sum_{k=1..n} binomial(n, k)*quadruple_factorial(k-1); %F A224500 a(n) = Sum_{k=1..n} n!(2k-2)!/((n-k)!k!(k-1)!). %F A224500 a(1)=1, a(2)=4, a(n) = (4n-5)*a(n-1) - (4n-4)*a(n-2) + 1 for n > 2. - _Giovanni Resta_, Apr 08 2013 %F A224500 E.g.f.: exp(x)*(1-sqrt(1-4*x))/2. - _Mark van Hoeij_, Apr 10 2013 %F A224500 G.f.: hypergeom([1,1/2],[],4*x/(1-x))*x/(1-x)^2. - _Mark van Hoeij_, Apr 10 2013 %F A224500 a(n) ~ 2^(2*n-3/2)*n^(n-1)*exp(1/4-n). - _Vaclav Kotesovec_, Aug 16 2013 %e A224500 For n=3, the a(3)=21 solutions are: %e A224500 a b c %e A224500 ab ba ac ca bc cb %e A224500 (ab)c a(bc) %e A224500 (ac)b a(cb) %e A224500 (ba)c b(ac) %e A224500 (bc)a b(ca) %e A224500 (ca)b c(ab) %e A224500 (cb)a c(ba) %t A224500 a[n_] := Sum[Binomial[n,k]*(2*k-2)! / (k-1)!, {k,n}]; Array[a,20] (* _Giovanni Resta_, Apr 08 2013 *) %o A224500 (Racket) %o A224500 #lang racket %o A224500 (require math/number-theory) %o A224500 (define (a n) %o A224500 (for/sum ([k (in-range 1 (+ n 1))]) %o A224500 (* (binomial n k) %o A224500 (/ (factorial (* 2 (- k 1))) %o A224500 (factorial (- k 1)))))) %o A224500 (PARI) x='x+O('x^66); Vec(serlaplace(exp(x)*(1-sqrt(1-4*x))/2)) /* _Joerg Arndt_, Apr 10 2013 */ %Y A224500 Cf. A185946, A220452, A001813, A000108. %K A224500 easy,nonn %O A224500 1,2 %A A224500 _Laurent Orseau_, Apr 08 2013