This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224515 #17 Feb 01 2025 14:58:29 %S A224515 0,4,3,24,23,44,43,112,111,180,76,264,248,348,164,480,479,411,611,327, %T A224515 183,115,139,943,1103,747,787,1111,1447,323,699,1984,1983,1851,2243, %U A224515 2008,1576,1388,1684,1072,976,1268,499,3383,3271,4124,4068,3679,4511,4315,3804,4999 %N A224515 a(n) = least k such that sqrt(k^2 XOR (k+1)^2) = 2*n+1, a(n) = -1 if there is no such k. %C A224515 Conjectures: %C A224515 1. a(n) >= 0. %C A224515 2. Least k is also the only such k. %C A224515 If both conjectures are true, then the sequence is a permutation of A221643. %H A224515 Charles R Greathouse IV, <a href="/A224515/b224515.txt">Table of n, a(n) for n = 0..1000</a> %t A224515 a[n_] := For[k=0, k <= 3*n^2+1, k++, If[ Sqrt[ BitXor[k^2, (k+1)^2]] == 2*n+1, Return[k]]] /. Null -> -1; a /@ Range[0, 51] (* _Jean-François Alcover_, Jun 05 2013 *) %o A224515 (Python) %o A224515 import math %o A224515 needTerms = n = 1024 %o A224515 i = 0 %o A224515 terms = [-1] * n %o A224515 while n: %o A224515 s = (i*i) ^ ((i+1)*(i+1)) %o A224515 r = int(math.sqrt(s)) %o A224515 if s == r*r: %o A224515 if (r&1)==0: break %o A224515 r = (r-1)//2 %o A224515 if r < needTerms: %o A224515 if terms[r] >= 0: break %o A224515 terms[r] = i %o A224515 n -= 1 %o A224515 i += 1 %o A224515 if n: print('Error') %o A224515 else: %o A224515 for i in range(needTerms): %o A224515 t = terms[i] %o A224515 print(t, end=', ') # math.sqrt((t*t) ^ ((t+1)*(t+1))) %o A224515 (PARI) a(n)=my(k=sqrtint(2*n^2),t);while(!issquare(bitxor(k^2,(k+1)^2),&t)||t!=2*n+1,k++);k \\ _Charles R Greathouse IV_, Jun 05 2013 %Y A224515 Cf. A221643. %K A224515 nonn,base,less %O A224515 0,2 %A A224515 _Alex Ratushnyak_, Apr 08 2013