This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224521 #33 Sep 08 2022 08:46:04 %S A224521 0,1,3,7,15,31,62,124,248,496,992,1985,3971,7943,15887,31775,63550, %T A224521 127100,254200,508400,1016800,2033601,4067203,8134407,16268815, %U A224521 32537631,65075262,130150524,260301048,520602096,1041204192,2082408385,4164816771,8329633543 %N A224521 Numbers a(n) with property a(n) + a(n+5) = 2^(n+5) - 1 = A000225(n+5). %C A224521 This is the case k=5 of a(n) + a(n+k) = 2^(n+k) - 1 = A000225(n+k). The sequences A000975, A077854, A153234 and A224520 correspond to cases k=1,2,3 and 4, respectively. %H A224521 G. C. Greubel, <a href="/A224521/b224521.txt">Table of n, a(n) for n = 0..1000</a> %H A224521 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,0,-1,3,-2). %F A224521 a(n) + a(n+5) = 2^(n+5) - 1. %F A224521 From _Joerg Arndt_, Apr 09 2013: (Start) %F A224521 G.f.: x/((1-x)*(1+x)*(1-2*x)*(1-x+x^2-x^3+x^4)). %F A224521 a(n) = +3*a(n-1) -2*a(n-2) -1*a(n-5) +3*a(n-6) -2*a(n-7). (End) %F A224521 a(n) = floor(2^(n+5)/33). - _Karl V. Keller, Jr._, Jul 03 2021 %t A224521 CoefficientList[Series[x/((1-x)*(1-2*x)*(1+x^5)), {x,0,40}], x] (* _G. C. Greubel_, Oct 11 2017 *) %t A224521 LinearRecurrence[{3,-2,0,0,-1,3,-2},{0,1,3,7,15,31,62},40] (* _Harvey P. Dale_, Apr 29 2020 *) %o A224521 (PARI) my(x='x+O('x^40)); concat([0], Vec(x/((1-x)*(1-2*x)*(1+x^5)))) \\ _G. C. Greubel_, Oct 11 2017 %o A224521 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*(1-2*x)*(1+x^5)) )); // _G. C. Greubel_, Jun 06 2019 %o A224521 (Sage) (x/((1-x)*(1-2*x)*(1+x^5))).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 06 2019 %o A224521 (Python) print([2**(n+5)//33 for n in range(31)]) # _Karl V. Keller, Jr._, Jul 03 2021 %Y A224521 Cf. A000975, A077854, A153234, A224520. %K A224521 nonn,easy %O A224521 0,3 %A A224521 _Arie Bos_, Apr 09 2013