This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224524 #20 Feb 04 2023 09:53:16 %S A224524 1,1,6,1,10,27,1,14,69,108,1,18,123,404,405,1,22,195,892,2155,1458,1, %T A224524 26,273,1716,5845,10830,5103,1,30,375,2732,13525,36042,52241,17496,1, %U A224524 34,477,4324,24575,99774,213647,244648,59049,1,38,603,6060,44545,208146,705215,1232504,1120599,196830 %N A224524 Table read by antidiagonals: T(n,k) is the number of idempotent n X n 0..k matrices of rank 1. %C A224524 Table starts %C A224524 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %C A224524 6, 10, 14, 18, 22, 26, 30, 34, 38, ... %C A224524 27, 69, 123, 195, 273, 375, 477, 603, ... %C A224524 108, 404, 892, 1716, 2732, 4324, 6060, ... %C A224524 405, 2155, 5845, 13525, 24575, 44545, ... %C A224524 1458, 10830, 36042, 99774, 208146, ... %C A224524 5103, 52241, 213647, 705215, ... %C A224524 17496, 244648, ... %C A224524 59049, ... %C A224524 ... %H A224524 Robert Israel, <a href="/A224524/b224524.txt">Table of n, a(n) for n = 1..10011</a> %e A224524 Some solutions for n=3, k=4: %e A224524 1 0 0 0 4 4 0 0 0 0 4 2 1 2 1 0 0 0 0 1 0 %e A224524 0 0 0 0 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 %e A224524 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 1 4 1 0 0 0 %p A224524 f:= proc(n,k) %p A224524 local tot, a1, a0, a2, m,u; %p A224524 tot:= 0; %p A224524 for a1 from 1 to n do %p A224524 for a0 from 0 to n-a1 do %p A224524 a2:= n-a1-a0; %p A224524 if a0 = 0 then tot:= tot + n!/(a1!*a2!)*a1*(k-1)^a2 %p A224524 elif a2 = 0 then tot:= tot + n!/(a0!*a1!)*a1*(k+1)^a0 %p A224524 else %p A224524 u:= n!/(a0!*a1!*a2!)*a1; %p A224524 for m from 2 to k do %p A224524 tot:= tot + u*((m-1)^a2 - (m-2)^a2)*(floor(k/m)+1)^a0 %p A224524 od %p A224524 fi %p A224524 od od; %p A224524 tot %p A224524 end proc: %p A224524 seq(seq(f(i,j-i),i=1..j-1),j=2..20); # _Robert Israel_, Dec 15 2019 %t A224524 Unprotect[Power]; 0^0 = 1; Protect[Power]; %t A224524 f[n_, k_] := Module[{tot, a1, a0, a2, m, u}, tot = 0; For[a1 = 1, a1 <= n, a1++, For[a0 = 0, a0 <= n - a1, a0++, a2 = n - a1 - a0; Which[a0 == 0, tot = tot + n!/(a1!*a2!)*a1*(k - 1)^a2, a2 == 0, tot = tot + n!/(a0!*a1!)*a1*(k + 1)^a0, True, u = n!/(a0!*a1!*a2!)*a1; For[m = 2, m <= k, m++, tot = tot + u*((m - 1)^a2 - (m - 2)^a2)*(Floor[k/m] + 1)^a0]]]]; tot]; %t A224524 Table[Table[f[i, j - i], {i, 1, j - 1}], {j, 2, 20}] // Flatten (* _Jean-François Alcover_, Feb 04 2023, after _Robert Israel_ *) %Y A224524 Column 1 is A027471(n+1). %K A224524 nonn,tabl %O A224524 1,3 %A A224524 _R. H. Hardin_, Apr 09 2013