cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A224525 Number of idempotent 3 X 3 0..n matrices of rank 1.

Original entry on oeis.org

27, 69, 123, 195, 273, 375, 477, 603, 735, 885, 1035, 1221, 1395, 1593, 1803, 2031, 2253, 2511, 2757, 3039, 3321, 3615, 3909, 4251, 4575, 4917, 5271, 5649, 6015, 6429, 6819, 7245, 7671, 8109, 8559, 9051, 9513, 9999, 10497, 11031, 11541, 12099, 12633
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2013

Keywords

Comments

Row 3 of A224524.

Examples

			Some solutions for n=3:
  0 1 0   1 3 2   0 1 0   1 3 1   0 0 0   0 0 0   1 0 0
  0 1 0   0 0 0   0 1 0   0 0 0   0 1 2   3 0 3   1 0 0
  0 3 0   0 0 0   0 2 0   0 0 0   0 0 0   1 0 1   2 0 0
		

Crossrefs

Programs

  • Maple
    f:= k -> 6*k^2 + 18*k + 3 + 6 * add(floor(k/m),m=2..k):
    map(f, [$1..50]); # Robert Israel, Dec 15 2019

Formula

a(n) = 6*n^2 + 18*n + 3 + 6 * A002541(n). - Robert Israel, Dec 15 2019

A224526 Number of idempotent 4 X 4 0..n matrices of rank 1.

Original entry on oeis.org

108, 404, 892, 1716, 2732, 4324, 6060, 8516, 11308, 14820, 18572, 23668, 28716, 34916, 41836, 49860, 58076, 68164, 78252, 90356, 102988, 116868, 131276, 148564, 165660, 184532, 204604, 226788, 249116, 274900, 300252, 328628, 357868, 389028, 421580, 457924, 493500
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2013

Keywords

Comments

Row 4 of A224524

Examples

			Some solutions for n=3:
  0 0 0 0     0 0 0 0     1 0 0 0     0 0 0 0     0 0 0 0
  0 0 0 0     2 0 0 1     0 0 0 0     1 1 0 0     0 0 0 0
  2 0 1 0     2 0 0 1     0 0 0 0     3 3 0 0     0 0 0 0
  0 0 0 0     2 0 0 1     0 0 0 0     2 2 0 0     1 0 1 1
		

Crossrefs

Programs

  • Maple
    F4 := k -> 8*k^3 + 36*k^2 + 24*add(m*floor(k/m), m = 2 .. k) + 12*add(floor(k/m), m = 2 .. k) + 12*add(floor(k/m)^2, m = 2 .. k) + 60*k + 4:
    map(F4, [$1..100]); # Robert Israel, Dec 15 2019
  • Mathematica
    Table[8*n^3+36*n^2+60*n+4+24*Sum[k*Floor[n/k],{k, 2, n}]+12*Sum[Floor[(n-k)/k],{k, n-1}]+12*Sum[Floor[(n/k)]^2,{k,2,n}],{n,1,100}] (* Metin Sariyar, Dec 15 2019 *)

Formula

a(n) = 8*n^3 + 36*n^2 + 60*n + 4 + 24*A024917(n) + 12*A002541(n) + 12*Sum_{m=2..n} floor(n/m)^2. - Robert Israel, Dec 15 2019

Extensions

More terms from Metin Sariyar, Dec 15 2019

A224527 Number of idempotent 5X5 0..n matrices of rank 1.

Original entry on oeis.org

405, 2155, 5845, 13525, 24575, 44545, 69195, 107925, 156505, 223355, 301605, 413755, 535845, 694695, 882245
Offset: 1

Views

Author

R. H. Hardin Apr 09 2013

Keywords

Comments

Row 5 of A224524

Examples

			Some solutions for n=3
..0..0..0..0..0....0..3..0..2..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....3..1..1..1..3....1..0..0..0..1
..2..3..0..1..3....0..3..0..2..1....0..0..0..0..0....2..0..0..0..2
..2..3..0..1..3....0..0..0..0..0....0..0..0..0..0....3..0..0..0..3
..0..0..0..0..0....0..3..0..2..1....0..0..0..0..0....1..0..0..0..1
		

A224528 Number of idempotent 6X6 0..n matrices of rank 1.

Original entry on oeis.org

1458, 10830, 36042, 99774, 208146, 430278, 745650, 1289622, 2048514
Offset: 1

Views

Author

R. H. Hardin Apr 09 2013

Keywords

Comments

Row 6 of A224524

Examples

			Some solutions for n=2
..0..0..1..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..1..0..0..0
..0..0..0..0..0..0....0..0..0..0..2..2....0..0..0..0..0..0....0..0..2..0..0..0
..0..0..1..0..0..0....0..0..0..0..1..1....1..0..0..0..1..2....0..0..1..0..0..0
..0..0..2..0..0..0....0..0..0..0..2..2....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..1..0..0..0....0..0..0..0..0..0....1..0..0..0..1..2....0..0..2..0..0..0
..0..0..1..0..0..0....0..0..0..0..1..1....0..0..0..0..0..0....0..0..1..0..0..0
		
Showing 1-4 of 4 results.