A224526 Number of idempotent 4 X 4 0..n matrices of rank 1.
108, 404, 892, 1716, 2732, 4324, 6060, 8516, 11308, 14820, 18572, 23668, 28716, 34916, 41836, 49860, 58076, 68164, 78252, 90356, 102988, 116868, 131276, 148564, 165660, 184532, 204604, 226788, 249116, 274900, 300252, 328628, 357868, 389028, 421580, 457924, 493500
Offset: 1
Keywords
Examples
Some solutions for n=3: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 2 0 1 0 2 0 0 1 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 2 2 0 0 1 0 1 1
Links
- Robert Israel, Table of n, a(n) for n = 1..4000
Programs
-
Maple
F4 := k -> 8*k^3 + 36*k^2 + 24*add(m*floor(k/m), m = 2 .. k) + 12*add(floor(k/m), m = 2 .. k) + 12*add(floor(k/m)^2, m = 2 .. k) + 60*k + 4: map(F4, [$1..100]); # Robert Israel, Dec 15 2019
-
Mathematica
Table[8*n^3+36*n^2+60*n+4+24*Sum[k*Floor[n/k],{k, 2, n}]+12*Sum[Floor[(n-k)/k],{k, n-1}]+12*Sum[Floor[(n/k)]^2,{k,2,n}],{n,1,100}] (* Metin Sariyar, Dec 15 2019 *)
Formula
a(n) = 8*n^3 + 36*n^2 + 60*n + 4 + 24*A024917(n) + 12*A002541(n) + 12*Sum_{m=2..n} floor(n/m)^2. - Robert Israel, Dec 15 2019
Extensions
More terms from Metin Sariyar, Dec 15 2019
Comments