cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A224665 T(n,k)=Number of n X n 0..k matrices with each 2X2 subblock idempotent.

Original entry on oeis.org

2, 3, 8, 4, 12, 32, 5, 16, 50, 78, 6, 20, 72, 108, 196, 7, 24, 98, 142, 260, 428, 8, 28, 128, 180, 332, 542, 916, 9, 32, 162, 222, 412, 668, 1126, 1858, 10, 36, 200, 268, 500, 806, 1356, 2230, 3678, 11, 40, 242, 318, 596, 956, 1606, 2634, 4336, 7096, 12, 44, 288, 372
Offset: 1

Views

Author

R. H. Hardin Apr 14 2013

Keywords

Comments

Table starts
....2....3....4.....5.....6.....7.....8....9...10...11...12...13..14..15.16.17
....8...12...16....20....24....28....32...36...40...44...48...52..56..60.64
...32...50...72....98...128...162...200..242..288..338..392..450.512.578
...78..108..142...180...222...268...318..372..430..492..558..628.702
..196..260..332...412...500...596...700..812..932.1060.1196.1340
..428..542..668...806...956..1118..1292.1478.1676.1886.2108
..916.1126.1356..1606..1876..2166..2476.2806.3156.3526
.1858.2230.2634..3070..3538..4038..4570.5134.5730
.3678.4336.5046..5808..6622..7488..8406.9376
.7096.8246.9480.10798.12200.13686.15256

Examples

			Some solutions for n=3 k=4
..1..1..4....1..0..0....1..1..3....1..0..0....1..1..1....1..1..3....1..1..2
..0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....0..0..0....0..0..0
..3..1..1....1..0..0....0..0..0....0..0..1....1..1..1....4..1..1....2..1..1
		

Crossrefs

Column 1 is A224543(n-1)
Row 1 is A000027(n+1)
Row 2 is A008574(n+1)
Row 3 is A001105(n+3)

Formula

Empirical for columns k=1..7:
k=1..7: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>10
Empirical for row n:
n=1: a(n) = 0*n^2 + 1*n + 1
n=2: a(n) = 0*n^2 + 4*n + 4
n=3: a(n) = 2*n^2 + 12*n + 18
n=4: a(n) = 2*n^2 + 24*n + 52
n=5: a(n) = 4*n^2 + 52*n + 140
n=6: a(n) = 6*n^2 + 96*n + 326
n=7: a(n) = 10*n^2 + 180*n + 726
n=8: a(n) = 16*n^2 + 324*n + 1518
n=9: a(n) = 26*n^2 + 580*n + 3072
n=10: a(n) = 42*n^2 + 1024*n + 6030
n=11: a(n) = 68*n^2 + 1796*n + 11594
n=12: a(n) = 110*n^2 + 3128*n + 21912
Showing 1-1 of 1 results.