A224544 Number of (n+1) X 3 0..1 matrices with each 2 X 2 subblock idempotent.
16, 32, 52, 86, 137, 218, 345, 547, 869, 1385, 2214, 3549, 5702, 9178, 14794, 23872, 38551, 62292, 100695, 162821, 263331, 425947, 689052, 1114751, 1803532, 2917988, 4721200, 7638842, 12359669, 19998110, 32357349, 52354999, 84711857, 137066333
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..1..1....0..0..0....1..1..1....1..0..0....1..0..0....1..0..0....1..0..0 ..0..0..0....0..0..0....0..0..0....1..0..0....1..0..0....0..0..0....1..0..1 ..0..0..0....0..0..0....0..0..1....1..0..0....1..0..0....0..0..0....1..0..1 ..0..0..0....0..1..1....0..0..1....1..0..0....0..0..0....1..1..1....1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224550.
Formula
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
Empirical g.f.: x*(16 - 32*x + 4*x^2 + 22*x^3 - 11*x^4) / ((1 - x)^3*(1 - x - x^2)). - Colin Barker, Aug 30 2018
Comments